

iOS 7 Game Development

Develop powerful, engaging games with ready-to-use
utilities from Sprite Kit

Dmitry Volevodz

BIRMINGHAM - MUMBAI

iOS 7 Game Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1140114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-157-6

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Dmitry Volevodz

Reviewers
Jayant C Varma

Dave Jewell

Acquisition Editors
Meeta Rajani

Rebecca Youe

Commissioning Editor
Manasi Pandire

Technical Editors
Kunal Anil Gaikwad

Krishnaveni Haridas

Manal Pednekar

Copy Editors
Alfida Paiva

Sayanee Mukherjee

Project Coordinators
Sherin Padayatty

Akash Poojary

Proofreader
Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Yuvraj Mannari

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Dmitry Volevodz is an iOS developer. He has been doing freelance software
development for a few years and has finally settled in a small company. He does
enterprise iOS development by day and game development is his hobby.

I would like to thank my beloved wife Olesya for her patience and
support in everything I do. I would also like to thank Gennady
Evstratov for believing in my programming abilities. Without him,
this book would have never happened. I would also like to thank
Alex Kuster for the artwork he provided for this book.

About the Reviewers

Jayant C Varma is an Australian author, developer, and trainer who has gained
experience from several other countries. He is the author of Learn Lua for iOS Game
Development and is the founder of OZ Apps, a development consultancy specializing
in mobile development. He has managed the IT operations for BMW dealerships
since the mid 90s and has been an adopter of new technologies. He has also been
an academic with James Cook University, and is actively involved in training and
conducting workshops with AUC and ACS. He has previously created a text-based
adventure game engine which was used in Z-Day Survival Simulator for Mongadillo
Studios. He has been a reviewer for Packt Publishing on numerous iOS-related books
and technologies including iOS development, such as MonoTouch Cookbook, Corona
SDK Mobile Game Development, and Instant New iPad Features in iOS 6 How-to.

Dave Jewell has been working with microprocessors since you could count
Bill Gates' bank balance. He has developed apps for Windows 1.0 (and still wakes
up screaming!), the original 128K Apple Mac, and many other refugees from the
science museum. Current interests include cross-platform mobile app development,
CMS systems, and designing of programming languages and compilers. He is
currently working as a freelance software developer, specializing in the creation
of bespoke apps for iOS and Android. In the past, Dave has written thousands
of technical articles as a contributing editor, and is a regular writer for many
programming magazines including Program Now, .EXE, Delphi Magazine,
Developer's Review, PC Plus, and PC Answers. He has also authored and co-authored
a number of books including Instant Delphi (Wrox Press) and Polishing Windows
(Addison-Wesley). Most of his books are now, like their author, long past their
sell-by date.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface	 1
Chapter 1: Updates on iOS 7	 5

Redesigning the iOS	 5
New APIs	 7
Developing games for iOS 7	 8
Framework for game development	 8
Knowing about Sprite Kit	 10
Benefits of Sprite Kit	 10
Game controller support	 11
Game center renovations	 12
Summary	 12

Chapter 2: Our First Sprite Kit Project	 13
Sprite Kit basics	 14
Anatomy of a Sprite Kit project	 15
Scenes	 16
Nodes	 16

Node types	 17
Actions	 18
Game loop	 19
Adding a background image to our game	 22
Moving the character with actions	 28
Adding infinite scrolling	 29
Adding a score label	 30
Summary	 31

Table of Contents

[ii]

Chapter 3: Interacting with Our Game	 33
Handling touches	 33
Using gesture recognizers	 36
Accelerometer	 38
Physics engine	 42

Physics simulation basics	 42
Implementing the physics engine	 44

Summary	 47
Chapter 4: Animating Sprites	 49

What is animation?	 49
What is a texture atlas?	 50
Adding animations to our project	 51
Character states	 56
Adding shield animations	 58
Adding a parallax background	 62
Summary	 65

Chapter 5: Particle Effects	 67
Particle emitters	 67
First particle effect	 68
Advanced physics	 72
Scene transitions	 78
Summary	 80

Chapter 6: Adding Game Controllers	 81
Native game controllers	 82
Game controller basics	 82
Using a controller in our game	 85
Handling controller notifications	 90
Adding sound and music	 91
Summary	 94

Chapter 7: Publishing to the iTunes App Store	 95
Registering as a developer	 95
Bundle ID	 97
Provisioning profiles	 98
Preparing our application for the App Store	 99
Managing applications in iTunes Connect	 100
Life after uploading	 104
Summary	 104

Index	 105

Preface
Sprite Kit is a new framework from Apple for developing 2D games for iOS devices.
It is new, fresh, and exciting.

Developers have been waiting long for a native library for games, but Apple
did not deliver it until Version 7.0 of their operating system. Developers had to
use unreliable third-party libraries, work on fixing bugs in these libraries, and
experiencing headaches when suddenly your project just stops compiling under new
versions of the operating system.

All these problems can be forgotten with the new Sprite Kit framework. It allows
for easy and fast game development. It mimics many methods and the API of the
Cocos2d library, which is a wildly popular library for game development. If you
have ever checked out Cocos2d, you will feel right at home with Sprite Kit.

iOS 7 Game Development will take you on a journey to build a game from scratch
using a hands-on approach. We will start with the basics and continue with
advanced topics. We will explain every bit of code for maximum understanding.

We will build an endless runner game, an amazingly popular genre on the App
Store, and will explain all the systems that have to be built in order to provide the
best user experience.

What this book covers
Chapter 1, Updates on iOS 7, provides you with a short coverage of what features
iOS 7 brings to the table—operating system redesign, new frameworks, and game
controller support.

Chapter 2, Our First Sprite Kit Project, explains you Sprite Kit basics, how to show a
sprite on the screen, how to move it, and what properties and methods are available
on sprite nodes. We will also discuss game loops and actions.

Preface

[2]

Chapter 3, Interacting with Our Game, shows you the way to control our character
sprite, either by using gesture recognizers or with raw touch processing.

Chapter 4, Animating Sprites, walks you through the process of creating a texture
atlas, animating our character, and creating actions to handle starting and
finishing animations. We will also add nice parallax scrolling to our game.

Chapter 5, Particle Effects, explains how to create cool-looking particle effects,
how to store and edit them and their properties, and ways to improve your
game performance when using particle effects.

Chapter 6, Adding Game Controllers, walks you through the process of adding native
game controller support to your game. We will check different controllers,
their layouts, and ways to handle thumbstick, direction pad, and button inputs.

Chapter 7, Publishing to the iTunes App Store, explains how to post your application
to the iTunes App Store. We will learn about different application icons,
categories, certificates, provisioning profiles, new Xcode publishing features,
and the review process.

What you need for this book
You will need a Mac running OS X 10.9 and Xcode Version 5.0 or higher. You are
expected to have familiarity with Objective-C.

Who this book is for
This book is intended for those who have great ideas for games and who want to
learn about iOS game development. You should know and understand Objective-C.
Being familiar with iOS development is helpful, but is not required. This book will
make you familiar with the new Sprite Kit framework in no time.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “The thing that might have caught
your attention is the format specifier @”run%.3d”.”

Preface

[3]

A block of code is set as follows:

- (void) stopRunningAnimation
{
 [self removeActionForKey:@”running”];
}

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website,
or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Updates on iOS 7
In this chapter, we will find out what's new in iOS 7, starting from new designs,
which new APIs and SDKs were presented by Apple with iOS 7, and why you
should pick Sprite Kit for game development.

Redesigning the iOS
The new operating system from Apple features overhauled design in almost every
element. All buttons, pickers, labels, navigation bars—everything looks and feels
different. The concepts that Apple has chosen are simplicity and minimalism.
Apple designers have chosen to get rid of the rich textures and gradients that we
grew to love for six versions of their mobile operating system.

The new interface is unobtrusive; everything seems to be in its place. Everything that
used to draw your attention is now gone, and your content is now in the center of
the new design. For example, the following is the screenshot of the iOS 6 calendar
followed by its iOS 7 version.

The change to "flat" design was met with enthusiasm by some and not so by
others, but all we know is that it is here to stay.

When you are working on your game, you should probably check out the
best practices by Apple designers, as they are thought-out, thoroughly tested,
and well implemented.

Everything that you need to know about interface design on iOS devices can be
found in Human interface guidelines by Apple at https://developer.apple.com/
library/ios/documentation/userexperience/conceptual/mobilehig/.

Updates on iOS 7

[6]

On comparing the following two screenshots, you can see the old and new look of
the Calendar application. Apple has focused on the user-generated content; you can
see that the space for user data is much larger in the iOS 7 version; however, in the
old Calendar application, we can see only two lines of our content.

The Calendar application in iOS 6

Buttons have transformed into simple lines of text, without any background or
frame, while gradients on the navigation and bottom bar are gone and are replaced
by the simple gray background.

Chapter 1

[7]

The Calendar application on iOS 7

New APIs
The new operating system from Apple features numerous new APIs. Some of them
are long overdue and expected, and some are quite surprising. Some of them that are
worth mentioning are as follows:

•	 Text Kit: This is an API for laying out text and for fine typography. Text Kit
helps you lay out text in the way you like without any headache.

•	 Dynamic behaviors for views: With this, you can now assign physics effects
to your views so they can follow each other, or gravity effects can be applied
to views with ease.

•	 Multitasking enhancements: With this, applications have the ability to
fetch data in the background, something that was available only to certain
applications such as Newsstand apps. Now, your game can fetch some amount
of data while the user is not playing it, such as daily missions or news.

Updates on iOS 7

[8]

•	 Sprite Kit framework: This is a new framework for developing 2D games,
and features hardware sprites acceleration, simple sound playback support,
and physics simulation.

•	 Game controller support: This is a new framework that provides common
ground for hardware controllers.

Developing games for iOS 7
In June 2013, Apple announced that the App Store has hit the next milestone—50
billion downloads with more than 14 billion dollars paid to developers all over the
world. The ecosystem that only started to exist a few years ago already raked in
more money for developers than any other platform.

A major share of this revenue is taken by game developers, ranging from large
companies such as EA, Disney, and Rovio to small indie developers that manage to
create best-selling applications with small budgets—everyone can find their place
under the sun.

The most profitable and most downloaded titles on the App Store are 2D games—
Angry Birds, Cut The Rope, and Doodle Jump. Rovio managed to create an empire
out of a single title, and now it is selling merchandise, soft drinks, and toys, and all
of this came out of a single mobile game (not their first one though, as Angry Birds
was their 52nd title!).

Framework for game development
Before iOS 7 (and Sprite Kit), there were various options for frameworks that could be
used for game development. Each of them has its own advantages and disadvantages.

If you wanted to make a game before iOS 7, you had only so many options. They are
as follows:

•	 OpenGL ES
•	 UIKit controls and views
•	 Third-party libraries (Unity, Unreal 3D, and Cocos2d)

Chapter 1

[9]

Let us see each of them in detail:

•	 OpenGL is very customizable and open-ended, but it is hard to learn,
and you need to know a lot of things just to get an image on screen. It is
good if you are an experienced programmer or a company, and you want to
write cross-platform solutions. OpenGL offers good performance, but you
have to pay with code complexity.

•	 Next up is UIKit, which is the default iOS programming framework.
Every element that you see in a regular iOS application, such as buttons,
pickers, views, and navigation bars, comes from here. But there are only
so many games that can look good with the default interface—some trivia
games, maybe some manager games, but that's it. There are benefits to
this—your user already knows everything he can do with the interface,
gesture controls, and back buttons, and this makes it easier to actually
present your idea, but at the same time, UIKit fails to immerse your user
into the game; you get the same interface as almost every other application
in the App Store. Another big problem with UIKit is performance, or the lack
of it. After all, it was not designed for dynamic games, and if you decide to
make something complicated in it, you will find the bottleneck pretty fast.

•	 Another option to consider is third-party libraries. There are dozens of them,
and few are very popular among the developers. Unity3D is good, as it offers
a cross-platform solution as well as massive numbers of tutorials. The same
can be said about Unreal 3D. But these libraries often require you to know
completely different programming languages such as C#, C++, or even
Lua. It might not be a good choice if you know Objective-C and want to
write native applications for the platform, not to mention that the level of
complexity of these frameworks is high. You need to learn a lot just before
you can have simple sprites moving on screen.

•	 Another option that you have is the Cocos2d framework. It is somewhat
easy, can get you going fast, is open source, and works with Objective-C.
But as with any third-party library, it has its disadvantages. It does not
support ARC out of the box. It has problems when Apple releases new
versions of iOS—so far, every OS release had left Cocos2d code broken
in one way or another. You could have the rotation feature stop working
altogether, or suddenly some methods may fail to compile with errors.
This doesn't really work if all you want is a simple framework for
your games.

Updates on iOS 7

[10]

Knowing about Sprite Kit
Apple presented iOS 7 in September 2013, featuring numerous new features for users
and developers. One of them is Sprite Kit—a new framework for game developers.

Sprite Kit is a native SDK from Apple that allows simple entry into game development,
without unnecessary overhead and a long learning process. If you are familiar with
Cocos2d, you will have an easy time with Sprite Kit, as it is heavily inspired by the
former. Sprite Kit provides native rendering and animation infrastructure to work
with sprites as well as animations, particle systems, scenes, actions, physics simulation,
and video effects.

A sprite is a two-dimensional image or animation integrated into a
larger scene. Any image can be a sprite—a character, a tree, or a bullet.

It allows easy work with sprites, the core component of all 2D games. Almost
everything you can see on the screen of a 2D game is a sprite.

Benefits of Sprite Kit
Sprite Kit has certain advantages that will help you determine if you want to base
your game on it. They are as follows:

•	 Sprite Kit is part of the iOS SDK: This means that it will be supported by
Apple, and everything you write is likely to be future-proof. Your code will
not magically stop working (or even compiling!), and things you are getting
on screen are guaranteed to stay the same. Everyone who works with
third-party libraries is aware of the issues that come with using a non-native
SDK. With Sprite Kit, you can forget about installation problems and
compatibility problems.

•	 Easy-to-use API: This is developed by some of the best engineers in the
world. Everything is logical and works as expected. Clear methods and
properties work just as you would expect them to.

•	 Built-in tools: With this, you no longer have to use third-party software to
make your texture atlases, assets, or fonts. You just drop in your images and
Xcode does everything for you.

•	 Built-in physics engine: This makes your life as a developer much easier.
You do not have to pick out one of the third-party physics engines or work
on integration of that code into your project—it just works out of the box.

Chapter 1

[11]

•	 Your game will work both on iOS and Mac without much effort: Sprite Kit
supports both Mac and iOS, and all you need to change is controls. You will
have touch controls for your iPhone and iPad versions and the mouse and
keyboard controls for Mac.

Game controller support
One of the most interesting features of iOS 7 is the native controller support.
Some companies such as iCade and others tried working on their own controllers,
but this effort has not seen much success. Surely, some games supported it,
but the majority of games were left unsupported.

Developers did not feel the need to support such devices, as their install base is
small, and return on investment was just not available. But everything changed
when Apple decided to roll out support for such controllers. Now we have a native
API to work with controllers and all future controllers by different vendors that
will work with this API. In the following diagram, you can see an Apple-proposed
design for one of the game controllers. As you can see, it offers all the features of a
modern controller—two thumb sticks, shoulder buttons, and LEDs.

L2 shoulder button/trigger R2 shoulder button/trigger

LED array

Joysticks

L2

L1 R1

Y
X

A
B

R2

L1 shoulder button R1 shoulder button

Game controller for iOS 7

Updates on iOS 7

[12]

There have been rumors that vendors such as Logitech are already working on
such controllers, and you as a developer should probably work on implementing
them in your game, as the effort required to make them work is really small,
and the satisfaction that your player gets when the game works with his controller
is enormous.

The new Game Controller framework allows discovering and connecting compatible
game controllers to your iOS device.

Game center renovations
Game center have several new features that will help you with your games. Some of
them have been listed as follows:

•	 Increased limit of leaderboards per application: Now you can have up to
100 leaderboards in your game.

•	 New feature—exchanges: This allows your turn-based player to initialize
actions even if it is not their turn. Previously, you had to wait for your turn
to even chat, and now you can do that on other players' turns if the game
supports that.

•	 Improved features to prevent cheating: Cheating, obviously, is never good,
especially if your game is competitive and has leaderboards. We all know
how such games are infested with hackers, and these new features will
certainly help with that.

Summary
In this chapter, we have learned what new exciting features and APIs iOS 7 has
to offer us. We have found out what Sprite Kit is and why we should use it for
game development and its advantages. We have found out that Apple unified
game controllers, and new ones will be available shortly. If you are reading this
book, chances are that you are planning to make games for iOS, and Sprite Kit
is an excellent choice.

In the next chapter, we will start working on our first Sprite Kit project, a fully
featured endless runner game.

Our First Sprite Kit Project
In this chapter, we will look into Sprite Kit basics. Sprite Kit consists of a lot of small
elements and we need to have a clear understanding of what they do to have an
overview of a typical Sprite Kit project to see how we might plan and implement a
full-featured game.

We will explore everything that we might need when creating our own project,
as the main goal of the book is to provide an understanding of Sprite Kit as a tool
for game development. We will start with the project that we will be creating in
this book—an endless runner game.

This style of game is really popular on mobile devices, as it allows for quick gameplay
when you get a minute and has this "just one more" feeling to it. A player wants to
beat/better his own score, maybe even beat his friend's scores. Our game will feature
jumping and you will want to evade dangerous things that may appear on screen.
You get a higher score the longer you run without failing.

Our First Sprite Kit Project

[14]

Sprite Kit basics
First of all, we need to create a basic project from the template to see how everything
works from the inside. Create a new project in Xcode by navigating to File | New |
Project. Choose SpriteKit Game after navigating to iOS | Application, as shown in
the following screenshot:

Creating a Sprite Kit project

On the next screen, enter the following details:

•	 Product Name: Endless Runner.
•	 Organization name: Enter your name.
•	 Company Identifier: This is a unique Identifier that identifies you as a

developer. The value should be similar to what you entered while registering
your Apple developer account or com.your_domain_name.

Chapter 2

[15]

•	 Class Prefix: This is used to prefix your classes due to poor Objective-C
namespace. People often ignore this (it makes sense when you make small
projects, but if you use any third-party libraries or want to follow best
practices, use three-lettered prefixes). We will use ERG (denoting Endless
Runner Game) for this. Apple reserves using two-lettered prefixes for
internal use.

•	 Devices: We are making the game for iPhones, so ensure iPhone is selected.

Now, save the project and click on Create.

Once you have created the project, build and run it by clicking on the play button at
the top-left corner of the window.

You will see the Hello, World! label at the center of the screen, and if you tap the
screen, you will get a rotating spaceship at that point. At the bottom-right corner of
the screen, you can see the current FPS (frames per second) and number of nodes
in the scene.

Anatomy of a Sprite Kit project
A Sprite Kit project consists of things usual to any iOS project. It has the
AppDelegate, Storyboard, and ViewController classes. It has the usual structure
of any iOS application. However, there are differences in ViewController.view,
which has the SKView class in Storyboard.

You will handle everything that is related to Sprite Kit in SKView. This class will
render your gameplay elements such as sprites, nodes, backgrounds, and everything
else. You can't draw Sprite Kit elements on other views.

It's important to understand that Sprite Kit introduces its own coordinate system.
In UIkit, the origin (0,0) is located at the top-left corner, whereas Sprite Kit locates
the origin at the bottom-left corner. The reason why this is important to understand
is because of the fact that all elements will be positioned relative to the new
coordinate system. This system originates from OpenGL, which Sprite Kit uses
in implementation.

Our First Sprite Kit Project

[16]

Scenes
An object where you place all of your other objects is the SKScene object. It represents
a single collection of objects such as a level in your game. It is like a canvas where
you position your Sprite Kit elements. Only one scene at a time is present on SKView.
A view knows how to transition between scenes and you can have nice animated
transitions. You may have one scene for menus, one for the gameplay scene,
and another for the scene that features after the game ends.

If you open your ViewController.m file, you will see how the SKScene object is
created in the viewDidLoad method.

Each SKView should have a scene, as all other objects are added to it. The scene and
its object form the node tree, which is a hierarchy of all nodes present in the scene.

Open the ERGMyScene.m file. Here, you can find the method where scene
initialization and setup take place:

- (id)initWithSize:(CGSize)size

The scene holds the view hierarchy of its nodes and draws all of them. Nodes are
very much like UIViews; you can add nodes as children to other nodes, and the
parent node will apply its effects to all of its children, effects such as rotation or
scaling, which makes working with complex nodes so much easier.

Each node has a position property that is represented by CGPoint in scene
coordinates, which is used to set coordinates of the node. Changing this position
property also changes the node's position on the screen.

After you have created a node and set its position, you need to add it to your scene
node hierarchy. You can add it either to the scene or to any existing node by calling
the addChild: method. You can see this in your test project with the following line:

[self addChild:myLabel];

After the node has been added to a visible node or scene, it will be drawn by the
scene in the next iteration of the run loop.

Nodes
The methods that create SKLabelNode are self-explanatory and it is used to represent
text in a scene.

The main building block of every scene is SKNode. Most things you can see on the
screen of any given Sprite Kit game is probably a result of SKNode.

Chapter 2

[17]

Node types
There are different node types that serve different purposes:

•	 SKNode: This is a parent class for different types of nodes
•	 SKSpriteNode: This is a node that draws textured sprites
•	 SKLabelNode: This is a node that displays text
•	 SKShapeNode: This is a node that renders a shape based on

a Core Graphics path
•	 SKEmitterNode: This is a node that creates and renders particles
•	 SKEffectNode: This is a node that applies a Core Image filter to

its children

Each of them has their own initializer methods—you create one, add it to your scene,
and it does the job it was assigned to do.

Some node properties and methods that you might find useful are:

•	 position: This is a CGPoint representing the position of a node in its parent
coordinate system.

•	 zPosition: This is a CGFloat that represents the position of a node on an
imaginary Z axis. Nodes with higher zPosition will be over the nodes that
have lower zPosition. If nodes have the same zPosition, the ones that
were created later will appear on top of those that were created before.

•	 xScale and yScale: This is a CGFloat that allows you to change the size of any
node. The default is 1.0 and setting it to any other value will change the sprite
size. It is not recommended, but if you have an image of a certain resolution,
scaling it will upscale the image and it will look distorted. Making nodes
smaller can lead to other visual artifacts. But if you need quick and easy ways
to change the size of your nodes, this property is there.

•	 name: This is the name of the node that is used to locate it in the node
hierarchy. This allows you to be flexible in your scenes as you no longer
need to store pointers to your nodes, and also saves you a lot of headache.

•	 childNodeWithName:(NSString *)name: This finds a child node with the
specified name. If there are many nodes with the same name, the first one
is returned.

•	 enumerateChildNodesWithName:usingBlock:: This allows you to
run custom code on your nodes. This method is heavily used throughout
any Sprite Kit game and can be used for movement, state changing,
and other tasks.

Our First Sprite Kit Project

[18]

Actions
Actions are one of the ways to add life to your game and make things interactive.
Actions allow you to perform different things such as moving, rotating, or scaling
nodes, playing sounds, and even running your custom code. When the scene
processes its nodes, actions that are linked to these nodes are executed.

To create a node, you run a class method on an action that you need, set its properties,
and call the runAction: method on your node with action as a parameter.

You may find some actions in the touchesBegan: method in ERGMyScene.m. In this
method, you can see that a new node (of the type SKSpriteNode) is created, and then
a new action is created and attached to it. This action is embedded into another action
that makes it repeat forever, and then a sprite runs the action and you see a rotating
sprite on the screen.

To complete the preceding process, it took only five lines, and it is very intuitive.
This is one of the Sprite Kit strengths—simplicity and self-documenting code.
As you might have noticed, Apple names methods in a simpler way so that you
can understand what it does just by reading the method. Try to adhere to the
same practice and name your variables and methods so that their function can be
understood immediately. Avoid naming objects a or b, use characterSprite or
enemyEmitter instead.

There are different action types; here we will list some that you may need in your
first project:

•	 Move actions (moveTo:duration:, moveBy, followPath) are actions
that move the node by a specified distance in points

•	 Rotate actions are actions that rotate your nodes by a certain angle
(rotateByAngle:duration:)

•	 Actions that change node scale over time (scaleBy:duration)
•	 Actions that combine other actions (sequence: to play actions one

after another, and repeatAction: to play an action a certain amount
of times or forever)

There are many other actions and you might look up the SKAction class reference if
you want to learn more about actions.

Chapter 2

[19]

Game loop
Unlike UIKit, which is based on events and waits for user input before performing
any drawing or interactions, Sprite Kit evaluates all nodes, their interactions,
and physics as fast as it can (capped at 60 times per second) and produces results
on screen. In the following figure, you can see the way a game loop operates:

update: Evaluating actions Simulating physics

Rendering scene

The update loop

First, the scene calls the update:(CFTimeInterval)currentTime method and sends
it the time at which this method was invoked. The usual practice is to save the time
of the last update and calculate the time that it took from the last update (delta) to
the current update to move sprites by a given number of points, by multiplying the
velocity of a sprite by delta, so you will get the same movement regardless of FPS.
For example, if you want a sprite to move 100 pixels every second, regardless of your
game performance, you multiply delta by 100. This way, if it took long to process
the scene, your sprite will move slightly further for this frame; if it is processed
fast, it will move just a short distance. Either way you get expected results without
complex calculations.

After the update is done, the scene evaluates actions, simulates physics, and renders
itself on screen. This process repeats itself as soon as it's finished. This allows for
smooth movement and interactions.

You will write the most essential code in the update: method, since it is getting
called many times per second and everything on screen happens with the code we
write in this method.

You will usually iterate over all objects in your scene and dispatch some job for each
to do, such as character moving and bullets disappearing off screen. The update:
method is not used in a template project, but it is there if you want to customize it.
Let's see how we can use it to move the Hello, World! label off the screen.

First, find where the label is created in the scene init method, and find this line:

myLabel.text = @"Hello, World!";

Our First Sprite Kit Project

[20]

Add this code right after it:

myLabel.name = @"theLabel";

Find the update: method; it looks like this:

- (void)update:(CFTimeInterval)currentTime

Insert the following code into it:

 [self enumerateChildNodesWithName:@"theLabel" usingBlock:^(SKNode
*node, BOOL *stop) {

 node.position = CGPointMake(node.position.x - 2, node.
position.y);

 if (node.position.x < - node.frame.size.width) {

 node.position = CGPointMake(self.frame.size.width, node.
position.y);
 }
 }];

This method first finds the child node with the name "theLabel", and as we named
our label the same, it finds it and gives control to the block inside. The child that it
found is a node. If it finds other nodes with the name "theLabel", it will call the
same block on all of them in the order they were found. Inside the block, we change
the label position by 2 pixels to the left, keeping the vertical position the same.
Then, we do a check, if the position of the label from the left border of the screen is
further than the length of the label, we move the label to the right-hand side of the
screen. This way, we create a seamless movement that should appear to be coming
out of the right-hand side as soon as the label moves off screen.

But if you run the project again, you will notice that the label does not
disappear. The label takes a bit longer to disappear and blinks on screen
instead of moving gracefully.

Chapter 2

[21]

There are two problems with our code. The first issue is that the frame is not
changing when you rotate the screen, it stays the same even if you rotate the
screen. This happens because the scene size is incorrectly calculated at startup.
But we will fix that using the following steps:

1.	 Locate the Endless Runner project root label in the left pane with our files.
It says Endless Runner, 2 targets, iOS SDK 7.0. Select it and select the
General pane on the main screen.
There, find the device orientation and the checkboxes near it.
Remove everything but Landscape Left and Landscape Right.
We will be making our game in landscape and we don't need
the Portrait mode.

2.	 Next, locate your ERGViewController.m file. Find the viewDidLoad method.
Copy everything after the [super viewDidLoad] call.

3.	 Make a new method and add the following code:
- (void) viewWillLayoutSubviews
{
 // Configure the view.
 [super viewWillLayoutSubviews];
 SKView * skView = (SKView *)self.view;
 skView.showsFPS = YES;
 skView.showsNodeCount = YES;

 // Create and configure the scene.
 SKScene * scene = [ERGMyScene sceneWithSize:skView.bounds.
size];
 scene.scaleMode = SKSceneScaleModeAspectFill;

 // Present the scene.
 [skView presentScene:scene];
}

4.	 Let's see why calculations of frame size are incorrect by default. When the
view has finished its load, the viewDidLoad method is getting called, but the
view still doesn't have the correct frame. It is only set to the correct dimensions
sometime later and it returns a portrait frame before that time. We fix this
issue by setting up the scene after we get the correct frame.

Our First Sprite Kit Project

[22]

The second problem is the anchoring of the nodes. Unlike UIViews, which are placed
on screen using their top-left corner coordinates, SKNodes are getting placed on the
screen based on their anchorPoint property. The following figure explains what
anchor points are. By default, the anchor point is set at (0.5, 0.5), which means that
the sprite position is its center point. This comes in handy when you need to rotate
the sprite, as this way it rotates around its center axis.

0,1 1,1

0,0 1,0

0.5,0.5

Anchor point positions

Imagine that the square in the preceding figure is your sprite. Different anchor
points mean that you use these points as the position of the sprite. The anchor point
at (0, 0) means that the left-bottom corner of our sprite will be on the position of the
sprite itself. If it is at (0.5, 0.5), the center of the sprite will be on the position point.
Anchor points go from 0 to 1 and represent the size of the sprite. So, if you make
your anchor point (0.5, 0.5), it will be exactly on sprite center.

We might want to use the (0,0) anchor point for our text label.

The problem is that we can't set an anchor point for SKLabelNode.
There are several ways to overcome this problem, such as adding an empty
SKSpriteNode, attaching SKLabelNode to it, and setting the anchor
point of the first node to (0,0). We will leave this as an exercise for you.

Adding a background image to our game
First we need to add the background file to our project. Xcode 5 offers new ways to
handle your assets. Find background.png in resource files for this chapter. Find
images.xcassets in the project navigator on the left-hand side of the screen. Click on
it and you will see a list of resources currently in your application. Drag-and-drop
background.png into the left-hand list near Appicon and LaunchImage. Background
will be added to the list of available resources. Select it and drag it from the 1x box to
the 2x box, as this is a high-resolution image to use on retina devices.

Chapter 2

[23]

Next, we should utilize this image somehow. The first thing that comes to mind
is to make SKSpriteNode out of the image and move it in the update: method.
Sounds good, but if we add everything into the scene, it will be too bloated and
unmanageable. Let's make a separate class file that will handle background images
for us:

1.	 We will need some place to store all our constants and variables that we
might need throughout our game. Common header file looks like a good
place to store them. Navigate to File | New File, click on C and C++ on
the left-hand side under the iOS category and select Header File there.
Name it Common.h.

2.	 Locate the file Endless Runner-Prefix.pch. The contents of this file are
added to every source file in our project. Add the #import "Common.h" line
right after Foundation.h. This way, our header file will be automatically
imported into everything. You can find this file inside the Supporting Files
folder in the list of project files on the left-hand side of the Xcode window.

Our First Sprite Kit Project

[24]

3.	 Add the name of our background node, static NSString
*backgroundName = @"background"; to the Common.h file so
we can reference it from anywhere.

4.	 Again, create a new file, an Objective-C class, name it ERGBackground,
and set SKSpriteNode as its parent class when asked.

We will be handling everything background related in the ERGBackground
class. Let's make the class method return the preset background so we can use
it in our game.

Add this method to the implementation file and its prototype to the header file:

+ (ERGBackground *)generateNewBackground
{
 ERGBackground *background = [[ERGBackground alloc]
initWithImageNamed:@"background.png"];
 background.anchorPoint = CGPointMake(0, 0);
 background.name = backgroundName;
 background.position = CGPointMake(0, 0);
 return background;
}

This method starts by creating a new background node from the file that we have
added before. We set the anchor point to (0,0) to help with scrolling. This way,
the position of the node will be at the left-bottom corner of the image so that we
don't have to calculate the starting position of the node. By default, the anchor point
is (0.5,0.5), and if we want to set two sprites back-to-back, we have to calculate halves
of those nodes. If we use (0,0) as the anchor point, we just add a new sprite on the
position where the last sprite ended and that's it.

Why did we assign static NSString as the name of the background and not just type
some arbitrary string? Compilers offer no error handling for the names of files or
names, so you can miss small mistakes in filenames, and this mistake won't be easy
to find. By using static NSString, we let compilers handle errors for us. Next is the
node position on screen—we want it to start from the left edge of screen, so we set
it there.

After we have created the background, we need to use it somewhere. In the
ERGMyScene.m file, import ERGBackground.h, and inside the header file, add the
@class ERGBackground line before the @interface declaration, and also add a
new property:

@property (strong, nonatomic) ERGBackground *currentBackground

Chapter 2

[25]

We will hold the currently shown background in it. Next up, remove everything
inside the brackets of the initWithSize: method, create a new background there,
and add it as a child node to the scene:

-(id)initWithSize:(CGSize)size {
 if (self = [super initWithSize:size]) {

 self.currentBackground = [ERGBackground
generateNewBackground];
 [self addChild:self.currentBackground];
 }
 return self;
}

Build and run the project now and you will see the background there.
Everything looks pretty good. But how do we get it to move?

We may go into the update: method and do it in the same quick and dirty way as
we did with the label—just move it by some amount of pixels each time it updates.
But we don't want a different speed of scrolling on different devices. That's why we
will implement the moving speed based on time and not on iterations per second.

To do this, we need to add a new property to ERGMyScene.h:

@property (assign) CFTimeInterval lastUpdateTimeInterval;

This will hold the time of the last update, and having this and currentTime (which we
get from the update: method), we can find the delta (difference) since the last update.

In your update: method, remove any old code and add this code:

 CFTimeInterval timeSinceLast = currentTime - self.
lastUpdateTimeInterval;
 self.lastUpdateTimeInterval = currentTime;
 if (timeSinceLast > 1) { // more than a second since last update
 timeSinceLast = 1.0 / 60.0;
}

The preceding code is taken from Apple and it looks good enough for us. It calculates
the delta we need in timeSinceLast and handles this value if too much time has
passed since the last update (for example, you exit the application and came back to it
or took a call).

Our First Sprite Kit Project

[26]

Having done this, we can set up a much more precise movement. Let's add a new
constant to the Common.h file:

static NSInteger backgroundMoveSpeed = 30;

We will use this to handle background scrolling, new code to scroll background that
uses timing, and add it after handling time in the update: method:

 [self enumerateChildNodesWithName:backgroundName
usingBlock:^(SKNode *node, BOOL *stop) {

 node.position = CGPointMake(node.position.x -
backgroundMoveSpeed * timeSinceLast, node.position.y);
 }];

We multiply time passed by speed to get the amount of pixels that the background
needs to be shifted in this frame (by frame, we mean the picture that gets drawn
60 times per second on screen, not the sprite bounding box). On the next frame,
the calculation proceeds, and if for some reason the frame rate drops, the user
won't notice it as the background moves at the same speed regardless of the frame
rate. There is a problem when the background scrolls too far to the left; we are left
with an empty screen. We will fix this in Chapter 4, Animating Sprites.

The next thing that we need to do is to add a character. Add the character.png
image to the project in the same way as you did with the background (find Images.
xcassets, select it, drag-and-drop the file there). Don't forget to set this image as a
2x image, since it is high resolution.

We will need a separate class for our player. First, let's add a new string to
Common.h to identify the player node:

static NSString *playerName = @"player";

After this, create a new class called ERGPlayer and make it inherit from
SKSpriteNode. Import the header file (ERGPlayer) into ERGScene.m so
that our program can access methods and properties from it.

Chapter 2

[27]

We need to redefine its init method so that we always get the same character for the
player. Add the following code to ERGPlayer.m:

-(instancetype)init
{
 self = [super initWithImageNamed:@"character.png"];
 {
 self.name = playerName;
 }
 return self;
}

This method calls the parent implementation of the designated initializer.
Next, add the player object to ERGMyScene.m by adding this code to the
scene init method:

 ERGPlayer *player = [[ERGPlayer alloc] init];
 player.position = CGPointMake(100, 68);
 [self addChild:player];

If you run the project now, you will see the moving background and character sprite
on it, as shown in the following screenshot:

Background and character sprites on screen

Our First Sprite Kit Project

[28]

Moving the character with actions
Let's discover how we can add simple player movements to our game, for example,
jumping. One of the ways to handle this could be by creating a new action that will
move the character up by a certain amount of pixels and then move the character
down. Let's try this out.

Remove everything from the touchesBegan: method in ERGMyScene.m. It should
look like this:

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event {

 // we are creating action to move the node that runs it by vector
 // of x and y components with duration in seconds
 SKAction *moveUp = [SKAction moveBy:CGVectorMake(0, 100)
duration:0.8];

 // same as before, but it is opposite vector to go down, and it is
a bit
 // faster, since gravity accelerates you
 SKAction *moveDown = [SKAction moveBy:CGVectorMake(0, -100)
duration:0.6];

 // sequence action allows you to compound few actions into one
 SKAction *seq = [SKAction sequence:@[moveUp, moveDown]];

 // childNodeWithName: method allows you to find any node in
hierarchy with
 // certain name. This is useful if you don't want to store things
 // as instance variables or properties
 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:playerName];

 // after creating all actions we tell character to execute them
 [player runAction:seq];
}

If you tap now, the character sprite will jump (that is, move up and then go down).
Notice that we didn't write anything regarding the player in the update loop and
it still works. The actions system is separate from the update loop. If we set some
player movement in the update: method, they would work simultaneously,
running the action for a duration and updating every frame. Also, notice that if you
jump a couple of times, these will all stack up and work awkwardly. We could fix
this by adding a variable that tells us whether the character is in the middle of a
jump, and further jump and other actions should be ignored.

Chapter 2

[29]

But this is unnecessarily complicated. What if we wanted to add platforms,
how would we handle that?

Generally speaking, the action system is useful if you know you need to do
a certain thing with your objects and nothing changes while executing them.
This way, actions are useful and very helpful, since doing something like that
in the update loop can be daunting.

Another powerful feature of actions is that they can be sequenced or repeated,
and you can make very complex movements and effects with them.

Adding infinite scrolling
Since having the background disappear is not the way it is meant to be, we will add
an infinite background. One way to do it is to load as large a background as the
memory allows and hope the player loses before reaching the end of the background
image. But there is a much better way. We will have relatively small background
segments, and when the background segment is going to end, we will create a new
one and attach it to the end of the current segment. When the old one goes off the
screen, it is removed and destroyed.

This way, we will have only two backgrounds in memory at any time, and this
makes it easier and simpler to manage.

First we need to adjust the zPosition property of the player and the Background
object. If we make a new background when the player is on screen, eventually it will
cover the player, as nodes that were made later are rendered on top of earlier ones.
Go to ERGPlayer.m, and in the init method, add self.zPosition = 10. Do the
same for ERGBackground.m in the class method that generates the background by
setting backg.zPosition = 1.

Nodes with a predetermined zPosition will always be rendered in the correct
order. Nodes with a higher zPosition will be rendered on top of nodes with a
lower zPosition.

Here is the new update: method that gives us infinite background:

-(void)update:(CFTimeInterval)currentTime {

 CFTimeInterval timeSinceLast = currentTime - self.
lastUpdateTimeInterval;
 self.lastUpdateTimeInterval = currentTime;
 if (timeSinceLast > 1) { // more than a second since last update
 timeSinceLast = 1.0 / 60.0;
 self.lastUpdateTimeInterval = currentTime;

Our First Sprite Kit Project

[30]

 }
 [self enumerateChildNodesWithName:backgroundName
usingBlock:^(SKNode *node, BOOL *stop) {
 node.position = CGPointMake(node.position.x -
backgroundMoveSpeed * timeSinceLast, node.position.y);
 if (node.position.x < - (node.frame.size.width + 100)) {
 // if the node went completely off screen (with some extra
pixels)
 // remove it
 [node removeFromParent];
 }}];
 if (self.currentBackground.position.x < -500) {
 // we create new background node and set it as current node
 ERGBackground *temp = [ERGBackground generateNewBackground];
 temp.position = CGPointMake(self.currentBackground.position.x
+ self.currentBackground.frame.size.width, 0);
 [self addChild:temp];
 self.currentBackground = temp;
 }
}

You can adjust the speed in Common.h to check if the scrolling is really infinite.
You can do this by modifying backgroundMoveSpeed. There are some optimizations
that can be done about this. Instead of creating new nodes each time, we could just
keep two backgrounds in memory at all times and just reposition them every time
one went off the screen. But this way, you are limited to the same background image.

Adding a score label
The next thing we need to have in our game is a label that shows how far we have
gone. First, add two new properties to ERGMyScene.h:

@property (strong, nonatomic) SKLabelNode *scoreLabel;
@property (assign) double score;

After this, add a new label and actions for it in the scene initWithSize: method:

 self.score = 0;
 self.scoreLabel = [[SKLabelNode alloc] initWithFontNamed:@"Ch
alkduster"];
 self.scoreLabel.fontSize = 15;
 self.scoreLabel.color = [UIColor whiteColor];
 self.scoreLabel.position = CGPointMake(20, 300);

Chapter 2

[31]

 self.scoreLabel.zPosition = 100;
 [self addChild:self.scoreLabel];

 SKAction *tempAction = [SKAction runBlock:^{
 self.scoreLabel.text = [NSString
stringWithFormat:@"%3.0f", self.score];
 }];

 SKAction *waitAction = [SKAction waitForDuration:0.2];
 [self.scoreLabel runAction:[SKAction
repeatActionForever:[SKAction sequence:@[tempAction, waitAction]]]];

Why would we need so many actions? We could go the easier way of refreshing
a label in the update: method, but rendering text on labels is an expensive task,
and calling it for every update is not a good idea. That's why we create an action
that updates the label every 0.2 seconds.

The label is created the way you expect; we set the properties that we need and add
it as a child to the scene.

Next, add the following code to the end of the update: method:

self.score = self.score + (backgroundMoveSpeed * timeSinceLast / 100);

Now the label updates in real time. As our character moves, the score increases.

Summary
In this chapter, we have learned the basics of Sprite Kit. There are many things that
have to be finished in our game, but we have a robust background now. Our project
is relatively small, but we can already see the basic gameplay elements in action.
Things that we have learned are:

•	 The properties and hierarchy of SKNodes
•	 SKSpriteNode, anchoring, and drawing
•	 How to draw an infinite scrolling background
•	 How to draw a text label
•	 How to move a sprite on screen (actions and update method)
•	 How a game loop operates

In the next chapter, we will discuss interacting with our game, handling touches and
gesture recognizers, and moving sprites.

Interacting with Our Game
In this chapter, we will discuss the ways in which we can get input from the player.
As there are many different ways to handle user input, we will see the advantages
and disadvantages of each of them. Some of the ways to interact with the game are
as follows:

•	 Touching the screen (taps)
•	 Gesture recognizers
•	 Accelerometer and gyroscope
•	 Game controller events

Handling touches
When the user touches the iOS device screen, our current running scene will receive
a call to one of the following methods:

•	 -(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

•	 -(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

•	 -(void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

•	 -(void) touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)
event

Interacting with Our Game

[34]

Each method gets an NSSet class of a UITouch object (which holds the coordinates
of our touch), and the event holds information about the window and view in which
the touch was triggered as well as information about the touch. Let's see what each
of them does:

•	 touchesBegan:: This method gets triggered each time the user touches the
screen, unrelated to whether this touch continues as a long press or not.

•	 touchesMoved:: This method provides you with events that occurred if the
user moved a finger while on screen, and provides new touches.

•	 touchesEnded:: This method gets called when the user takes their finger off
the screen. This can be useful, for example, if you want some animation to
play after the user removes their finger, or to re-enable physics calculations
on the node.

•	 touchesCancelled:: This method is rarely needed, but you should
implement it anyway. It is called when some event cancels the touch,
for example, an on-screen alert, phone call, notifications (such as a push
notification or calendar notification), and others. You will likely want to
trigger the same code as in touchesEnded:.

Sprite Kit offers a few helper methods to assist us with touches and detecting nodes
in which touches happened. We will list some of them here. These are all methods
of SKScene:

•	 [touch locationInNode:(SKNode*)node: This is an example of one of
the methods to convert location from UIView coordinates to coordinates in
SKNode. This is useful since touch objects in those methods have UIView
coordinates and we operate with Sprite Kit coordinates.

•	 [self nodeAtPoint:(CGPoint)p]: This method returns the node in the
scene's hierarchy that intersects the provided point. This can be useful to
detect touches on certain nodes without tedious calculations.

Now that we have learned the basics, let's implement the basic functionality of touch
handling. We will move the character sprite by dragging it around. We will need to
perform a few steps to accomplish this, which are as follows:

1.	 Add @property (assign) BOOL selected; to your player class in
ERGPlayer.h—we will use this to handle the state of the player sprite;
whether we should drag it when the user drags a finger on the screen
or disregard such touches.

Chapter 3

[35]

2.	 Add the following code to the beginning of the touchesBegan: method
in ERGScene:

 UITouch *touch = [touches anyObject];
 SKSpriteNode *touchedNode = (SKSpriteNode *)[self
nodeAtPoint:[touch locationInNode:self]];

 if (touchedNode.name == playerName) {
 ERGPlayer *player = (ERGPlayer *) touchedNode;
 player.selected = YES;
 return;
 }

On the first line, we get the touch object from the touches set and then try to
find if it intersects any node. To do that, we call the nodeAtPoint: method and
provide the location of the touch by converting touch to the Sprite Kit coordinates
in the locationInNode: method. We want to ignore taps on the background itself,
so this is why we check to make sure the player was tapped.

If we tap the player, we set selected to YES so that the touchesMoved: method
knows that we are dragging the character sprite. After that, we call return to exit
the method, as after this return statement, we have other code that we don't want
to trigger.

The next thing that we need to handle is the touchesMoved: method. We haven't
used that before, so type it as follows:

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 UITouch *touch = [touches anyObject];

 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:playerName];
 if (player.selected) {

 player.position = [touch locationInNode:self];
 }
}

This method (touchesMoved:) checks if the player is actually selected, and if it
is, the coordinates are changed to the touch location. We only want to drag the
character sprite if touches began on it.

Interacting with Our Game

[36]

And the thing that we need to do last is remove the selected property after the touch
has ended:

- (void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
{
 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:playerName];
 if (player.selected) {
 player.selected = NO;
 }
}

Now, if you build and run the project, you will be able to drag the character sprite
around. Another option to consider is to move the score label around the screen to
the position that you would like.

You might have noticed that we are checking the view hierarchy each time we want
to grab a pointer to the player. This is not the optimal way to do it. Another option
to consider is using a player as a property of the scene. This looks like a fast and
easy way to do it, but consider that you might have a few objects on screen, or even
dozens of them that need interaction. Having 20 properties for this reason does not
seem feasible.

You should also know that traversing a node tree is not a very fast or efficient
operation. Imagine that you have 1,000 nodes. If you need to find a node by name
and it is not there, the code will traverse each of these nodes as it needs to make
sure that there is none with your name.

This traversal might happen a few times during just one frame calculation, and since
this happens many times per second, you might get a very real slowdown from this.
You might want to cache certain nodes in weak pointers in case you need them later.
Usually, you might want to avoid many node tree traversals.

Using gesture recognizers
Gesture recognizers allow us to not bother with the low-level code that was
explained earlier in this chapter. Without gesture recognizers, certain things
might be extremely hard to implement, such as pinching in and out or rotating.
Thankfully, Apple has handled all of this for us.

We might want to increase and decrease the speed of scrolling for testing reasons,
so we will implement this feature.

Chapter 3

[37]

The first thing that comes to mind is adding a gesture recognizer to our scene,
pointing it to some method, and be done with it. But unfortunately, this won't
work—SKNodes and SKScenes do not support adding gesture recognizers.
But there is a way to make this work.

SKScene has a handy method, — (void)didMoveToView:(SKView *)view,
which we can use, and it gets called each time a scene is about to be attached
to some view. When we run our game, this happens right after the scene creation,
and thus it is a useful place to set up our gesture recognizers. The following is
the code for this method:

- (void)didMoveToView:(SKView *)view
{
 UISwipeGestureRecognizer *swiper = [[UISwipeGestureRecognizer
alloc] initWithTarget:self action:@selector(handleSwipeRight:)];
 swiper.direction = UISwipeGestureRecognizerDirectionRight;
 [view addGestureRecognizer:swiper];

 UISwipeGestureRecognizer *swiperTwo = [[UISwipeGestureRecognizer
alloc] initWithTarget:self action:@selector(handleSwipeLeft:)];
 swiperTwo.direction = UISwipeGestureRecognizerDirectionLeft;
 [view addGestureRecognizer:swiperTwo];
}

We create two gesture recognizers, set the methods to be called, and specifically to
UISwipeGestureRecognizer, set the swipe direction. Thus, if we swipe to the right,
one method is called, and if we swipe to the left, another one is triggered. These
methods are fairly straightforward, as they only increase or decrease speed:

- (void) handleSwipeRight:(UIGestureRecognizer *)recognizer
{
 if (recognizer.state == UIGestureRecognizerStateRecognized) {
 backgroundMoveSpeed += 50;
 }
}

- (void) handleSwipeLeft:(UIGestureRecognizer *)recognizer
{
 if (recognizer.state == UIGestureRecognizerStateRecognized &&
backgroundMoveSpeed > 50) {
 backgroundMoveSpeed -= 50;
 }
}

Interacting with Our Game

[38]

The interesting part here is a second check for background speed in the
handleSwipeLeft: method. We don't want to go into negative or zero speed,
since our background generator works only with positive scrolling (from right
to left), and if we have negative scrolling, the background will end.

Another thing that we need to remember is to remove the gesture recognizer once
the scene gets removed from the view, as we might get another scene in the same
view that doesn't know how to handle these methods. Thus, your application will
crash at this point. To prevent this, add this method:

-(void)willMoveFromView:(SKView *)view
{
 for (UIGestureRecognizer *recognizer in view.gestureRecognizers) {
 [view removeGestureRecognizer:recognizer];
 }
}

This gets called when our scene is about to be removed from the view. It iterates
over the gesture recognizers in the view, removing each of them.

Accelerometer
Accelerometers and gyroscopes in modern devices are probably the things that
have contributed to much of the popularity of iOS devices. Many people still play
Doodle Jump, a game where you control a character that jumps on platforms,
and is controlled by tilting your device.

Accelerometer controls have many advantages, which are as follows:

•	 You don't clutter the screen with game controls
•	 You don't need to cover the (already small) screen space with fingers while

playing your game
•	 The accelerometer controls can imitate real-life interactions—such as a car

steering wheel
•	 With new hardware (gyroscope) available on the latest devices (starting with

iPhone 4), you get precise data about the device's position, which leads to
smooth controls

Chapter 3

[39]

Some games benefit greatly from accelerometer support, and we are going to
implement this in our game.

Accelerometer data is available only on devices. Thus, if you test it on the
simulator, this code won't do anything, as the accelerometer will return
0 all the time. Consider getting an Apple developer license if you have
not got one already, as it offers the option of testing on a real device.
You can get it at https://developer.apple.com/programs/ios/.
It is especially useful for developing games, as the frame rate in Sprite
Kit in the simulator is far from the one that you get on real devices.
The simulator uses a much faster CPU and much faster memory, but the
emulated rendering pipeline is much slower, and you can get very low
fps in most trivial situations. Don't trust the frame rate in the simulator!

The accelerometer is handled by the Core Motion library, so you will need to
include that in your project. To do that, simply add @import CoreMotion;,
where all imports are at the top of the ERGMyScene.h file.

@import is the new way to import frameworks into your code, and it was
introduced with iOS 7 and Xcode 5. Earlier, you had to add a framework
to your project and use #import everywhere you needed it. Now you
can use @import and forget about adding a framework in the project's
settings. The only drawback to this is that you can only use the Apple
frameworks this way. Let's hope it will change to all libraries some day.

The next thing that you need to do is add the Core Motion manager as a property
to your scene.

To do that, add the following line to ERGMyScene.h:

@property (strong, nonatomic) CMMotionManager *manager;

The manager handles all accelerometer data, and we need it to use the
accelerometer's input. In order to start getting accelerometer data, we need
to call a few more methods.

In the initWithSize: method of ERGMyScene.m, add the following lines:

self.manager = [[CMMotionManager alloc] init];
self.manager.accelerometerUpdateInterval = 0.1;
[self.manager startAccelerometerUpdates];

Interacting with Our Game

[40]

In the first line, we instantiate the manager, and in the second one, we set the update
interval—how often the values in the motion manager will be updated. On the third
line, we tell the manager to start updating, as it won't do anything before that.

Using the accelerometer increases the power use of the device.
Heavy use will drain the battery faster, thus making your
game unlikely to be played further. Only use the accelerometer
when you actually need to, and stop polling it if something
stops the application or if you don't need to parse the
accelerometer data at this time. You can use [self.manager
stopAccelerometerUpdates]; to stop the accelerometer.

Accelerometer data can be read from manager.accelerometerData, and it consists
of three fields—X, Y, and Z axis angle. Each of them represents a value from -1 to 1.

Y axis

Z axis

X axis

Accelerometer data axes

As you can see in the previous diagram, there are three axes, and rotating the device
around each of them changes only that axis' values. You can see this if you add the
following line to the update: method of ERGScene:

NSLog(@"%@", self.manager.accelerometerData);

In order to see what is going on, run the application and start rotating the device
along a different axis, and you will see the value of that go from -1 to 1. We will
use the accelerometer data to move the character sprite. Remember that the
accelerometer does not work on the simulator.

How can we do that? We may read the accelerometer data and set the sprite position
to certain values based on that. But how do we set these positions? We need some
baseline value so that our character stands on the ground.

Chapter 3

[41]

As you rotate the device, you can see that values change very fast, and different
device positions yield different results. For every person, that baseline will be
different, and we need to acknowledge that. To compensate that baseline, we will
read the starting value on the launch of an application and base our movement on it.

For our landscape mode game, reading the X axis' coordinates will be most useful.
To get it, we poll self.manager.accelerometerData.acceleration.x.

In order to get the data that we need, we have to save that baseline value.
This is where it gets interesting. Accelerometer data is not available straight
away when you ask it to start updating. It takes some time to poll hardware.
First, add @property (assign) float baseline; to ERGMyScene.h—we
will store the offset for accelerometer data here.

In the init method, right after the startAccelerometerUpdates method, add the
performSelector call to execute the method that sets the baseline:

[self performSelector:@selector(adjustBaseline) withObject:nil
afterDelay:0.1];

After this, we need to add the adjustBaseline method:

- (void) adjustBaseline
{
 self.baseline = self.manager.accelerometerData.acceleration.x;
}

We will also need some value to be multiplied with the accelerometer data,
and having it as a magic number is never good, so let's add a new line to the
Common.h file:

static NSInteger accelerometerMultiplier = 15;

Add the following code to the bottom of your update method in ERGMyScene.m:

ERGPlayer *player = (ERGPlayer *) [self childNodeWithName:playerName];
 player.position = CGPointMake(player.position.x, player.position.y
- (self.manager.accelerometerData.acceleration.x - self.baseline) *
accelerometerMultiplier);

 if (player.position.y < 68) {
 player.position = CGPointMake(player.position.x, 68);
 }
 if (player.position.y > 252) {
 player.position = CGPointMake(player.position.x, 252);
 }

Interacting with Our Game

[42]

First, we get the pointer to our player sprite. Then, we calculate the new position by
multiplying the accelerometer data and the out multiplier to get the sprite position
on the Y axis. As we don't want to have our character fly off screen, we add a check;
if it goes below or over a certain point, its vertical position is reset to the minimum
value. Build and run the project to see if everything works.

Physics engine
The next big topic that we will discover is physics in our application. Physics-based
games are very popular on the App Store. Angry Birds, Tiny Wings, and Cut the
Rope are all physics-based. They offer lifelike interactions that are fun and appealing.

Another reason why we might want to have a physics engine is that it offers a lot
of functionality "for free". You no longer need to calculate different complicated
collisions, forces, and all things that may affect your nodes. Most of these things are
handled for you by a physics engine.

Physics simulation basics
If you want your node to participate in physics simulation, you have to add a physics
body to it. There are many available methods to generate physics bodies, and they
are as follows:

•	 BodyWithCircleOfRadius: This method creates a circular physics body.
It is the fastest physics body, and if you have many objects that need to
be simulated, consider setting their physics body to a circle.

•	 BodyWithRectangleOfSize: This is the same as the previous one,
but with a rectangle. Usually, passing a frame of a node is sufficient
enough for most games.

•	 BodyWithPolygonFromPath: This creates a physics body from CGPath.
This is useful if you have a very complex sprite and you want it to be
simulated as real as possible.

•	 BodyWithEdgeFromPoint:toPoint: This is useful to create edges such
as ground level.

There are more methods available; you can check them in the SKPhysicsBody
class reference.

Chapter 3

[43]

In order to simulate physics on many bodies in real time, there are many different
optimizations and simplifications. Let's cover some of them:

•	 All movements, just like in real life, are handled by impulses and forces.
The impulse is applied instantaneously; for example, if a moving ball
collides with a standing ball, the standing ball gets an impulse in one
moment. Force is a continuous effect that moves the body in some direction.
For example, launching a rocket is slow and steady as force gets applied
that pushes it up. All forces and impulses add to each other; thus, you can
have very complex movements with little hassle.

•	 All bodies are considered rigid—they can't deform as a result of physics
simulation. Of course, you can write your system over existing physics
simulation to do that for you, but it is not provided out of the box.

Each physics body has many properties, some of which are as follows:

•	 Mass: This is the mass of the body in kilograms. The more massive the body
is, the harder it is to move by impulses or forces.

•	 Density: This indicates how much mass the body has in a fixed amount of
volume. The denser the body is, the more mass it has for the same volume.

•	 Dynamic: This is the property that allows you to apply impulses or forces
to the body. Sometimes it is not needed; for example, ground will always be
static and not dynamic. You might also pick dynamic if you want to move
your body yourself, without the physics engine touching it.

•	 Restitution: This is the property that determines how "jumpy" or "bouncy"
the body is. The higher this is, the higher the knockback is. This ranges
from 0 to 1, but you can set this higher than 1, and in this case, the body will
accelerate each time after the collision, which may eventually lead to a crash.

•	 usesPreciseCollisionDetection: This is used to handle very fast moving
objects. There are certain situations in which collision might not get detected,
for example, if in one frame, the body is in front of another body, and in
the next frame it is completely behind it without touching it; in this case,
the collision will never be detected, and you don't want this. This method
is very CPU-intensive, so use it only if absolutely necessary.

•	 affectedByGravity: This property is set to NO if you don't want some objects
such as balloons to be affected by gravity.

•	 categoryBitMask: This is the bitmask that identifies the body. You might
choose different bitmasks for different objects.

Interacting with Our Game

[44]

•	 collisionBitMask: This is the bitmask that identifies what bodies this body
collides with. You might want some objects to collide with others, and other
objects to pass through others. You will need to set the same bitmasks for
objects that you want to collide.

•	 contactBitMask: This is the bitmask that identifies the body for handling
collisions manually. You might want to have special effects when things
collide; that's why we have this. When bodies have the same bitmask,
a special method will get called for you to handle such collisions manually.

Implementing the physics engine
We might as well start implementing physics in our engine in order to see what the
physics engine gives us. First, we need to set the physics body to our player sprite.
In order to do that, we need more constants in Common.h:

static NSInteger playerMass = 80;
static NSInteger playerCollisionBitmask = 1;

Next, change your init method in ERGPlayer.m to look as follows:

-(instancetype)init
{
 self = [super initWithImageNamed:@"character.png"];
 {
 self.name = playerName;
 self.zPosition = 10;
 self.physicsBody = [SKPhysicsBody bodyWithRectangleOfSize:CGSi
zeMake(self.size.width, self.size.height)];
 self.physicsBody.dynamic = YES;
 self.physicsBody.mass = playerMass;
 self.physicsBody.collisionBitMask = playerCollisionBitmask;
 self.physicsBody.allowsRotation = NO;
 }
 return self;
}

After creating the sprite and setting the name and z order, we start with the physics
body. We create a physics body with the same size as that of our sprite—it is accurate
enough for our game. We set it as dynamic, as we want to use forces and impulses
on our character. Next up, we set the mass, collision bitmask, and disallow rotation,
as we expect our character sprite to never rotate.

Chapter 3

[45]

This looks sufficient for our character sprite. What can we do with backgrounds?

Obviously, we need the player to collide with the top and bottom of the screen.
This is when other methods come in handy. Add this code right before the return
statement in the generateNewBackground method in ERGBackground.m:

 background.physicsBody = [SKPhysicsBody bodyWithEdgeFromPoint:CGPo
intMake(0, 30) toPoint:CGPointMake(background.size.width, 30)];
 background.physicsBody.collisionBitMask = playerCollisionBitmask;

We set the bitmask to be the same as we want the player to collide with the
background. But here comes the problem. Since all physics bodies need to be
convex, we can't create the physics body that accommodates both the top and
bottom collision surfaces. We might think of adding a second collision body
to the same node, but it is not supported.

There is a small hack around this—we will just create a new node, attach it as a child
to the background node, and attach the top collision body to it. Add the following
code after the previous code and right before the return statement:

 SKNode *topCollider = [SKNode node];
 topCollider.position = CGPointMake(0, 0);
 topCollider.physicsBody = [SKPhysicsBody bodyWithEd
geFromPoint:CGPointMake(0, background.size.height - 30)
toPoint:CGPointMake(background.size.width, background.size.height -
30)];
 topCollider.physicsBody.collisionBitMask = 1;
 [background addChild:topCollider];

Here, we create a new physics body with EdgeFromPoint, from the left edge to the
right edge. This way, we effectively have two colliding bodies on one background.

As we now want to have physics-based controls, you may remove all the code that
handles movement. These tapping and actions methods are as follows:

•	 touchesBegan:

•	 touchesMoved:

•	 touchesEnded:

•	 swipeLeft

•	 swipeRight

Interacting with Our Game

[46]

Or, you may just follow us. Change the didMoveToView method to the following:

- (void) didMoveToView:(SKView *)view
{
 UILongPressGestureRecognizer *tapper =
[[UILongPressGestureRecognizer alloc] initWithTarget:self action:@
selector(tappedScreen:)];
 tapper.minimumPressDuration = 0.1;
 [view addGestureRecognizer:tapper];
}

Here, we initialize and use the new gesture recognizer that will set the player's state
to accelerating, meaning that the player is moving up now. To handle this, add a
new property to ERGPlayer.h—@property (assign) BOOL accelerating;.

After this, add the following code to ERGMyScene.m:

- (void) tappedScreen:(UITapGestureRecognizer *)recognizer
{
 ERGPlayer *player = (ERGPlayer *)[self
childNodeWithName:@"player"];
 if (recognizer.state == UIGestureRecognizerStateBegan) {
 player.accelerating = YES;
 }

 if (recognizer.state == UIGestureRecognizerStateEnded) {
 player.accelerating = NO;
 }
}

As said before, we need this method to set an accelerated property on the
player—if it is active, we will apply a certain force on each frame of the player.
To do this, add the following to your update method:

 [self enumerateChildNodesWithName:@"player" usingBlock:^(SKNode
*node, BOOL *stop) {
 ERGPlayer *player = (ERGPlayer *)node;
 if (player.accelerating) {
 [player.physicsBody applyForce:CGVectorMake(0,
playerJumpForce * timeSinceLast)];
 }
 }];

Chapter 3

[47]

This code uses the playerJumpForce variable, which sets it in Common.h, as well as
the gravity vector:

static NSInteger playerJumpForce = 8000000;
static NSInteger globalGravity = -4.8;

We set gravity to custom as the real world's gravity is too high, and this strips away
the fun and precise controls of our game.

To affect gravity, add the following statement in ERGMyScene.m in the
initWithSize: method:

self.physicsWorld.gravity = CGVectorMake(0, globalGravity);

In order to make everything work, we need to comment out or delete the old
methods that are in the way. Comment out or delete the following methods:
touchesBegan, touchesMoved, touchesEnded, and touchesCancelled. If you
still have other gesture recognizers such as the long press gesture recognizer in
the didMoveToView: method, remove them too.

After these changes, we have a really precise and fun way to control our character.
We can control the jump of the player sprite just by tapping on the screen for a
certain amount of time. This mechanism is used in many endless runners, and is both
fun and addictive. You have to not only react fast but also predict what can happen,
since applying force to the character does not change your position instantaneously
as your movement carries some momentum, so you have to plan accordingly.

Summary
In this chapter, we have learned how to use the touch controls and gesture
recognizers to control characters on the screen. We have found out how to
move sprites with touch and learned the basics of the physics engine in Sprite
Kit. Integrating the physics engine in your game is a great way to handle collision
detection and add many interesting behaviors without bloating your code.

In the next chapter, we will learn about animations, how to implement them,
and related details, such as textures and texture atlases.

Animating Sprites
In the last few chapters, we managed to get the basics of our game out of the way—
we already have an infinite scrolling background, we handle collision detection with
the physics engine, and we already have established controls. How can we improve
our game? Of course, it can be enhanced with animation.

Our character does not move his legs while running, and that is clearly not the way it
should be. In this chapter, we are going to add animations to our character—he will
animate when he is running and jumping. We will also learn about texture atlases
and how to efficiently animate our game.

What is animation?
In order to achieve the desired effect of animating our character, we need to
understand a little more about animation. Behind the scenes, we will be showing
a rapid succession of images, which gives the illusion of movement. This is exactly
what we are going to do.

Animation is an easy way to add life to your game, to make it look nice and
engaging. We are going to use animation actions in order to run animations on
our character. An easy way to do this is by simply adding animation frames to
some array, feeding it to an action, and instructing the character sprite to run it
as shown in the following figure:

Changing the animation frames creates an illusion of movement

Animating Sprites

[50]

But there are some problems with it. Rendering individual frames from separate
textures is not a fast task. It requires a lot of so-called draw calls. Each time you draw
something on screen, you transfer that data to the video chip, and it performs the
drawing. But each of these calls is expensive as it bears some overhead. If you have
many animated objects on screen, you might experience slowdowns (lags) and the
frame rate may drop. To optimize our sprite drawing, we will use texture atlases.

What is a texture atlas?
To understand what a texture atlas is, check the figure following this section. As you
can see, an atlas is an image that contains many subimages. Our game is able to
access certain images in a texture atlas due to a special configuration file that keeps
the coordinates of each image in a texture atlas.

Before Xcode 5 and Sprite Kit, you had to use third-party tools in order to create
texture atlases, but now, all you need to do is create a folder named name.atlas,
where the name can be anything; add images to it and add that into your project in
Xcode. Xcode will handle everything for you transparently, and you won't have to
worry about plists, coordinates, efficiency, and everything else.

Benefits that texture atlases provide are as follows:

•	 All drawing from one atlas can be processed in one draw call, thereby
increasing performance dramatically.

•	 If your image has empty space, it will be cropped, and when you need the
image, it will be restored. This way, you save memory, and your applications
are smaller, which is a good thing.

However, you should remember that a texture atlas may not exceed 2000 x 2000
pixels, and if you have images that are larger than that, there is no point putting
them into atlases. If the sum of all images exceeds this value, the second image of the
atlas will be created in order to fit all images, as you can see in the following figure:

Chapter 4

[51]

Images in a texture atlas

Texture atlases are also smart. If you run on a retina device and you have two
versions of the atlas—one for the retina and one for regular resolution—it will
use the correct images. All you have to do is have one atlas with all of the images,
but retina images should have a @2x suffix, for example, spaceship.atlas,
and images such as spaceship1.png and spaceship1@2x.png. Xcode will create
different texture atlases for different devices, so you don't have to worry about
memory and other limitations.

Adding animations to our project
In order to add animations to our endless runner game, we need to perform the
following steps:

1.	 Find run.atlas, shield.atlas, deplete.atlas, and jump.atlas in the
resources for this chapter. Drag-and-drop them into the project and be sure
to check Copy items into destination group's folder.

2.	 Add the following property to ERGPlayer.h. We will use it to store
animation frames:
 @property (strong, nonatomic) NSMutableArray *runFrames;

Animating Sprites

[52]

3.	 Add the following code at the end of the ERGPlayer.m init method:
 [self setupAnimations];

 [self runAction:[SKAction repeatActionForever:[SKAction
animateWithTextures:self.runFrames timePerFrame:0.05 resize:YES
restore:NO]] withKey:@"running"];

First, we will call the setupAnimations function, where we will create an
animation from the atlas. On the second line, we will create an action that
repeats forever, takes an array of animation frames, and animates the sprite,
showing each frame for 0.05 seconds. The resize property is needed to adjust
the size of the sprite if it is smaller or larger in a new frame of animation.
The restore property changes the sprite back to the texture it had before
animation. If we add a key to the animation, we will be able to find it later
and remove it if needed.

4.	 The next thing to add is the method that makes that animation; add it
to ERGPlayer.m:

- (void) setupAnimations
{
 self.runFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *runAtlas = [SKTextureAtlas atlasNamed:@"run"];

 for (int i = 0; i < [runAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"run%.3d", i];
 SKTexture *tempTexture = [runAtlas textureNamed:tempName];
 if (tempTexture) {
 [self.runFrames addObject:tempTexture];
 }
 }
}

Chapter 4

[53]

On the third line of this method, we create a new array for animation frames.
Then, we load the texture atlas named run. In the for loop, we create a new
name for the texture and load it with that name into the frames array. We need
to check for nil, as adding nil objects to an array raises an exception, and we
don't want that. The format specifier, @"run%.3d", might have caught your
attention. It means that we want a string starting with run and ending with a
decimal number .3d means that the number has to be at least 3 digits long;
if it is smaller, replace the missing digits with zeroes. The names that this code
generates will look like run000, run001, and so on. If you are using a retina
device, they will automatically be adjusted to run000@2x and run001@2x.
You don't need to specify the file extension. You can read more about format
specifiers in the NSString class reference.

Build and run the project in a simulator. As you can see, our character has gained
nice animation. Try adjusting the scroll speed and animation speed to fit each other
better. There are some other adjustments we can do, which are as follows:

•	 If the player is already running, we don't want to start the animation again
•	 We may want a way to stop an animation

To accomplish these tasks, add the following two methods to ERGPlayer.m:

- (void) startRunningAnimation
{
 if (![self actionForKey:@"running"]) {
 [self runAction:[SKAction repeatActionForever:[SKAction
animateWithTextures:self.runFrames timePerFrame:0.05 resize:YES
restore:NO]] withKey:@"running"];
 }
}

- (void) stopRunningAnimation
{
 [self removeActionForKey:@"running"];
}

Animating Sprites

[54]

In the startRunningAnimation method, we do the same action that we did before
in the init block, but we check if the player already has an animation with this key,
and if he does, we do nothing here. In the second method, we find the animation and
remove it, effectively stopping it.

If you change the images in your project or add new ones, Xcode
doesn't make new atlases. In order to do that, execute the Run and
Clean commands from the Product menu on the Xcode file menu.
This forces Xcode to recreate texture atlases. You can see this in the
following screenshot:

Next up is the jump animation. We will add it in the same way as before.
The following things need to be done:

1.	 Check if you have jump.atlas in your project. If you don't, add jump.atlas
to your project in the same way as run.atlas.

2.	 Add the following property to ERGPlayer.h:
@property (strong, nonatomic) NSMutableArray *jumpFrames;

Chapter 4

[55]

3.	 Add the following code to the setupAnimations method in ERGPLayer.m.
It does the same, in that we create an array and add frames to it:
 self.jumpFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *jumpAtlas = [SKTextureAtlas
atlasNamed:@"jump"];

 for (int i = 0; i < [runAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"jump%.3d", i];
 SKTexture *tempTexture = [jumpAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.jumpFrames addObject:tempTexture];
 }
 }

4.	 Add a new method to handle jumping:

- (void) startJumpingAnimation
{
 if (![self actionForKey:@"jumping"]) {
 [self runAction:[SKAction sequence:@[[SKAction
animateWithTextures:self.jumpFrames timePerFrame:0.03 resize:YES
restore:NO],[SKAction runBlock:^{
 self.animationState = playerStateInAir;
 }]]] withKey:@"jumping"];
 }
}

The only interesting thing in this method is the new action—the runBlock
action. It lets you run any code in action, and here we set the player's state to
playerStateInAir, which means that the player is neither running nor jumping.

This is pretty much it. But how can we determine when to execute the jump
animation or run animation? We don't want our character to run while they
are in the air. This is why we need a state system for a player sprite.

Animating Sprites

[56]

Character states
In order to correctly handle states, we will expand our character code to handle
different states that can occur. Firstly, we need to identify the states, which are
as follows:

•	 Running state: This is the default state when the character is running on
the ground

•	 Jumping state: This is the state when we press a button to jump, but it
should be limited so that we don't continue the jumping state when we
are in the air

•	 In air state: This is the state when the character is still in the air following
a jump

In order to use these states, let's define them in ERGPlayer.h:

typedef enum playerState {

 playerStateRunning = 0,
 playerStateJumping,
 playerStateInAir

} playerState;

This code creates a new type of variable that is internally a usual integer, and we
use that to identify the state of the character. We could use integer, character,
or even string, but these can lead to problems. We will have to remember what
state corresponds to what integer, and here we just write the state as it is.

Now, we need to store this state in our character data. Add the following line
to ERGPlayer.h:

@property (assign, nonatomic)playerState animationState;

In this case, we want to execute some custom code when the animationState
property is changed, so we implement our own setAnimationState: method.
It is called each time we change the animationState property:

- (void) setAnimationState:(playerState)animationState
{
 switch (animationState) {
 case playerStateJumping:
 if (_animationState == playerStateRunning) {
 [self stopRunningAnimation];
 [self startJumpingAnimation];
 }

Chapter 4

[57]

 break;
 case playerStateInAir:
 [self stopRunningAnimation];
 break;
 case playerStateRunning:
 [self startRunningAnimation];
 break;
 default:
 break;
 }

 _animationState = animationState;
}

This method is triggered every time we try to set self.animationState, and instead
of the default implementation, it goes through this. We have a switch here that looks
for what kind of animationState we received. If it is the jumping state, and the
previous state was running, we stop the running animation and start the jumping
animation. As you may remember, after we have finished the jumping animation,
it changes its state to playerStateInAir. If we get to the running state, we start the
running animation. After everything has been handled, we set our instance variable
to the new value that we received. We do this only now as we need to know the last
known state, and we can get it from _animationState.

Properties and instance variables
There are two ways to store data in your classes—by using properties or
instance variables. Instance variables are easy and fast to access, and you
might use them if you need high-performance code. Properties usually add
some overhead to access, but offer much more. Properties are essentially
instance variables that are accessed with special methods. If you have
@property NSString *myString, it will be stored internally in
_myString, even if you don't add anything else. There will also be two
methods that access the said variable—(NSString *) myString and
(void) setMyString: (NSString *)myString. These methods are
hidden and generated by the compiler. Each time you access properties,
these methods are called. All of this is generated for us by Xcode behind
the scenes. However, if you need to change the way they are accessed—like
we do in this chapter—you can redefine these setter and getter methods.
You might want to inform someone or call some other methods from there.
This functionality adds a little bit of overhead, which in most situations is
negligible. But should you need to perform some very complicated and
CPU-intensive calculations, make sure to check the performance difference.
There are also other technologies that are only possible with properties
such as key-value observing.

Animating Sprites

[58]

The next thing that needs to be done is the location where we change states. The place
where everything changes is the update: method in ERGMyScene.m; find the line
where we enumerate child nodes with the name player and replace the current
implementation with this:

 [self enumerateChildNodesWithName:@"player" usingBlock:^(SKNode
*node, BOOL *stop) {
 ERGPlayer *player = (ERGPlayer *)node;
 if (player.accelerating) {
 [player.physicsBody applyForce:CGVectorMake(0,
playerJumpForce * timeSinceLast)];
 player.animationState = playerStateJumping;
 } else if (player.position.y < 75) {
 player.animationState = playerStateRunning;
 }
 }];

The preceding code searches for a player node and applies force to it—this is all old
code. The thing that was added here is the state change. Right after we apply force,
we know that we are probably jumping. Handling further jumping continues in the
previously discussed method. If the position of the sprite on the y axis is less than
75, the state is probably running, since even the smallest impulse will get us out
of that position. The actual position for the default sprite is 68, but as the frames of
animations change, this can fluctuate up to 75. Build and run the project to see the
animation in action.

Adding shield animations
Other animations and methods that we might want to add are the shield animations.
A shield is something that protects the player from different hazards. It has on and
off animations. You can check how the effect looks in the following screenshot:

The background looks dull

Chapter 4

[59]

Let's check the course of the action:

1.	 Add the following properties to ERGPlayer.h:
@property (strong, nonatomic) NSMutableArray *shieldOnFrames;
@property (strong, nonatomic) NSMutableArray *shieldOffFrames;
@property (strong, nonatomic) SKSpriteNode *shield;
@property (assign, nonatomic) BOOL shielded;

2.	 The first two properties are arrays for animation frames, the shield node is
added to a character sprite in order to show shield animations (we can't show
it on the character itself as it will disappear), and shielded is a state variable
so that other nodes can find out if we are shielded or not.

3.	 The next step is to create a shield node in the init method of EGPlayer:
 self.shield = [[SKSpriteNode alloc] init];
 self.shield.blendMode = SKBlendModeAdd;
 [self addChild:self.shield];

Here, we change blendMode to add since it results in a better visual effect.

Blending modes
A blending mode is the way how different pixels are added
together. By default, SKBlendModeAlpha is used. It uses an
alpha value of the pixel to determine which pixels and what
percent of color of each pixel are visible, and which are not.
Other blending modes are used if you need to stimulate light
(the additive blending mode) or increase the brightness and
color, or completely overlay one layer by another. The list of
available blending modes can be found in the SKBlendMode
class reference.

4.	 The next thing to do is add another custom setter for the shielded variable,
where we will handle all animations:

- (void) setShielded:(BOOL)shielded
{
 if (shielded) {
 if (![self.shield actionForKey:@"shieldOn"]) {
 [self.shield runAction:[SKAction
repeatActionForever:[SKAction animateWithTextures:self.
shieldOnFrames timePerFrame:0.1 resize:YES restore:NO]]
withKey:@"shieldOn"];
 }
 } else if (_shielded) {
 [self blinkRed];

Animating Sprites

[60]

 [self.shield removeActionForKey:@"shieldOn"];
 [self.shield runAction:[SKAction animateWithTextures:self.
shieldOffFrames timePerFrame:0.15 resize:YES restore:NO]
withKey:@"shieldOff"];
 }
 _shielded = shielded;
}

5.	 First, we look for a new value that we are presented with. If it is YES and we
don't have the animation running, we start the shield on animation. It repeats
itself since we want the shield to animate while it is on. If we are presented
with NO, the other portion of this method gets triggered. It checks if the player
was shielded before, and if it was, the character sprite blinks red, and it is time
to run the shield off the animation. If there was no shield before, we don't
want to play the shield dismissing animation. We want it to run only once.
We also don't want to have the shield on animation repeating itself, so we
remove the old action. After that, we set the shielded variable to the
provided value.

6.	 Add the blinkRed method:
- (void) blinkRed
{
 SKAction *blinkRed = [SKAction sequence:@[
 [SKAction
colorizeWithColor:[SKColor redColor] colorBlendFactor:1.0
duration:0.2],
 [SKAction
waitForDuration:0.1],
 [SKAction
colorizeWithColorBlendFactor:0.0 duration:0.2]]];
 [self runAction:blinkRed];
}

7.	 This method makes our player sprite red for a short while and then
returns it back to its regular state. To do this, it uses an action named
colorizeWithColor:, waits a little, and proceeds to colorize with the
default value, which is 0.0, meaning no colorization. The blend factor
specifies the amount of target color to be added to the existing texture.
The higher the blend factor is, the more intense is the color, and on 1.0,
all pixels of the texture will be of the chosen color.

8.	 Next is the setupAnimations method; we need to add new textures to it:
 self.shieldOnFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *shieldOnAtlas = [SKTextureAtlas
atlasNamed:@"shield"];

Chapter 4

[61]

 for (int i = 0; i < [shieldOnAtlas.textureNames count]; i++) {
 NSString *tempName = [NSString
stringWithFormat:@"shield%.3d", i];
 SKTexture *tempTexture = [shieldOnAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.shieldOnFrames addObject:tempTexture];
 }
 }

 self.shieldOffFrames = [[NSMutableArray alloc] init];
 SKTextureAtlas *shieldOffAtlas = [SKTextureAtlas
atlasNamed:@"deplete"];

 for (int i = 0; i < [shieldOffAtlas.textureNames count]; i++)
{
 NSString *tempName = [NSString stringWithFormat:@"deplete%
.3d", i];
 SKTexture *tempTexture = [shieldOffAtlas
textureNamed:tempName];
 if (tempTexture) {
 [self.shieldOffFrames addObject:tempTexture];
 }
 }

9.	 Same as before, we create arrays and populate them with textures extracted
from texture atlases.

10.	 In order to test the shielding functionality, you can add self.shielded = NO
to the startRunningAnimation method, and self.shielded = YES to
the startJumpingAnimation method. This way, while you are in the air,
the shield will work, but if you touch the ground, it will fade away.

Build and run the project now to see if everything runs as expected.

Now that we have most of our animations out of the way, we can recall the process
of adding animations to the node:

•	 Create an array to hold animation frames
•	 Extract textures from the texture atlas by iterating over it in a loop
•	 Create a method to run the animation action on the needed node
•	 Remove the action from the node if needed

Animating Sprites

[62]

Adding a parallax background
As you may have noticed, we have huge grey windows in our background (see the
screenshot in the Adding shield animations section), and it would be great to add a
parallax background over it. We will do it the same way we did with the original
background. We will add new sprite nodes and move them every frame.

The things that need to be done to add a parallax background are as follows:

1.	 Add parallax.png to images.xcassets in the Xcode project, either by
drag-and-drop or by clicking on the plus button in Xcassets. Select parallax
in the left Xcassets pane and move it from 1x to 2x by dragging, as we have
high-resolution artwork (see the following screenshot).

2.	 The next thing we need is some variables in Common.h:
static NSString *parallaxName = @"parallax";
static NSInteger parallaxMoveSpeed = 10;

3.	 We also need to have parallax as a property in ERGMyScene.h in order to
replace it with a new one. Add the following line:
 @property (strong, nonatomic) ERGBackground *currentParallax;

4.	 The next thing that we need to do is create that background layer. To do
that, go to the scene's initWithSize: method, and right after the creation
of self.background, add the code for the parallax layer's creation:
 self.currentParallax = [ERGBackground generateNewParallax];
 [self addChild:self.currentParallax];

5.	 In order to generate a new parallax, we need to expand ERGBackground.h.
Add the following method definition there:
+ (ERGBackground *)generateNewParallax;

Chapter 4

[63]

6.	 In ERGBackground.m, write the method itself:
+ (ERGBackground *)generateNewParallax
{
 ERGBackground *background = [[ERGBackground alloc]
initWithImageNamed:@"parallax.png"];
 background.anchorPoint = CGPointMake(0, 0);
 background.name = parallaxName;
 background.position = CGPointMake(0, 0);
 background.zPosition = 4;
 return background;
}

7.	 Here, we create the new sprite node, set its position and anchor point for our
convenience, and adjust its position on the z axis. Within the same file, in the
generateNewBackground method, change the assigned zPosition value
from 1 to 5 so that it appears above the parallax layer.

8.	 And finally, in the update: method in ERGMyScene.m, add code to handle the
moving and creating of new parallax layers:
 [self enumerateChildNodesWithName:parallaxName
usingBlock:^(SKNode *node, BOOL *stop) {
 node.position = CGPointMake(node.position.x -
parallaxMoveSpeed * timeSinceLast, node.position.y);
 if (node.position.x < - (node.frame.size.width + 100)) {
 // if the node went completely off screen (with some
extra pixels)
 // remove it
 [node removeFromParent];
 }}];
 if (self.currentParallax.position.x < -500) {
 // we create new background node and set it as current
node
 ERGBackground *temp = [ERGBackground generateNewParallax];
 temp.position = CGPointMake(self.currentParallax.
position.x + self.currentParallax.frame.size.width, 0);
 [self addChild:temp];
 self.currentParallax = temp;
 }

Animating Sprites

[64]

9.	 Here, we find a node with parallaxName, and we remove it if it is off the
screen. If the current parallax layer is halfway done or so, we create a new
parallax layer and set its position to where the last one ends, so that they
interconnect flawlessly. The following screenshot shows the addition of
parallax.png to Images.xcassets:

Adding parallax.png to Images.xcassets

Build and run the project, and you will see that the parallax background layer adds
to the atmosphere and look of the project. Suddenly, our game has gained depth and
looks great, as shown in the following screenshot:

The parallax layer adds depth to our game

Chapter 4

[65]

What is parallax?
Parallax is an effect that allows us to simulate depth on a two-dimensional
screen. This effect can be seen when you travel by train or by car. Trees that
are near you move fast, those that are at a distance move slowly, and things
on the horizon barely move. When some objects move faster and other
objects move slower, we get a feeling that there is depth to the scene.
We use this effect to add polish to our game.

Summary
In this chapter, we have learned that animation is a powerful way to add life to
your game. It helps to engage the player, as smooth and nice-looking animations are
always an eye candy. Learn to appreciate your animations and players will enjoy
your games. We have also learned about animations; how to create them, and how
to run and cancel them. We also found out what texture atlases are and how they
increase performance and save memory. We also learned how to colorize sprites,
how to perform parallax scrolling, and how to add depth to our game.

In the next chapter, we will learn about particle effects, and how to create and use
them to add more eye candy to your game.

Particle Effects
In this chapter, we will be discussing particle effects. These are the effects that are
created by utilizing particles, which are very small graphical entities. They are not
sprites and are rendered very efficiently, and you can have thousands of particles
on screen without any slowdown.

Particle effects are used for various effects that could be hard to implement otherwise.

This is why particle effects are often used to add polish and engagement to your
game. There are different kinds of effects that can be implemented by particle effects,
such as fire, explosions, rain, smoke, snow, fireworks, stars, and so on.

A particle is just a small sprite that appears on the screen for a very short amount of
time and disappears. Its speed, velocity, and other properties affect the outcome that
you will get on screen. There are hundreds and even thousands of those particles on
screen at any time particle effect is used. This is possible due to the fact that graphics
chips are optimized to show many objects with the same texture.

Particles are generated and destroyed by a special object called the particle emitter.
It knows when to make a new particle, when to kill off old particles, and the properties
of particles.

Particle emitters
Particle effects are generated by the SKEmitterNode particle emitter that generates
and manages particles. Generally, particles originate from their emitter. Each emitter
has a plethora of properties. There are more than twenty properties that affect the
emitter itself and the particles it generates.

Particle emitters are smart and they re-use particles like many other classes in
iOS ecosystem (for example UITableView and UICollectionView). Rather than
creating a new particle every time, it re-uses particles that have gone off-screen
instead. This is one of the reasons why particle effects are so efficient.

Particle Effects

[68]

There are two ways to create the particle emitter, either from file or programmatically.
We will look at both the methods.

First particle effect
How can we apply particle effects to our project? The first thing that comes to mind
is to add nice flames to our jetpack. In order to do that, we need to create a new
particle effects file. To do this, we need to navigate to the File menu and then to New
| New File. On the left-hand side table, click on Resource under the iOS section and
from the right-hand side of the screen, select SpriteKit Particle File, as shown in the
following screenshot:

Creating a new particle effects file

On the next screen, you will be asked what preset type of particle effect you want to
create. Pick a Spark type. Name it as jet.

Chapter 5

[69]

After you have done that, two new files will appear in your project, jet.sks
and spark.png. Click on the first one and you will see the particle effect in action,
then select SKNode Inspector on the right-hand side of the screen. Make sure
the Utilities pane is visible on the right-hand side (the top-right icon in the Xcode
window). Next, click on the rightmost icon below the toolbar, which looks like
a small cube. You will see Particle Editor, which is a built-in tool to customize
particle effects.

Particle effects editor in Xcode

Particle Effects

[70]

Now you will see the Emitter Node properties. Many of them are cryptic, but try
playing with them and you will see that they are not that scary. Let's discuss some
of them:

•	 Birthrate: This is the rate at which the emitter generates particles. The greater
the number here, the more intense the effect feels. Try to keep this as low as
possible to achieve the same effect for a good frame rate.

•	 Lifetime: This defines how long a particle will live. This indirectly affects
how far away the particles will fly from the emitter. Range here means that
the emitter will use a random value from the first value +- range.

•	 Position Range: This defines how far from the center of SKEmitterNode
the particles will appear. In practice, this affects how big you want your
emitter to be.

•	 Angle: This is the direction in which the particles will fly.
•	 Speed: This is the starting speed of the particle, with the same range

variance as in the previous properties.
•	 Acceleration: This value on x and y axes means where the particles will fly

as soon as they appear.
•	 Alpha: This makes the particles transparent and sets the value and range to

your liking.
•	 Scale: This is the size of the texture used for the effect. Sometimes you will

want smaller particles and sometimes you will want bigger ones, and this
property allows you to have only one texture for both of them.

•	 Rotation: This is rarely needed, as each particle lives for so little time that
usually rotation is meaningless.

•	 Color Blend: This is one of the most interesting properties. It allows you to
set color change in particle life. Particles can start at one color and slowly
arrive to another color.

Set particle effect properties to those shown in the preceding screenshot. This will
create a nice jet of flame that looks useful to our game. The next thing that we need
to do is add it to our player character.

In order to do that, add a new property to ERGPlayer.h:

@property (strong, nonatomic) SKEmitterNode *engineEmitter;

Chapter 5

[71]

After that, add the following lines to the init method of ERGPlayer.m:

 self.engineEmitter = [NSKeyedUnarchiver
unarchiveObjectWithFile:
 [[NSBundle mainBundle]
pathForResource:@"jet" ofType:@"sks"]];
 self.engineEmitter.position = CGPointMake(-12, 18);
 self.engineEmitter.name = @"jetEmitter";
 [self addChild:self.engineEmitter];
 self.engineEmitter.hidden = YES;

In the first line, we unarchive the emitter from file. Each Sprite Kit node is
archivable and serializable, so here we utilize that fact. Next, we set the position
of the emitter in our player sprite, give the emitter a name, and hide it since we
don't want it to be on always.

If you remember, we have already handled all physics of acceleration and
added the property that tells us whether the player is accelerating with the
same name. Now that we need extra behavior from that property, add a
new setter to it in ERGPlayer.m:

- (void) setAccelerating:(BOOL)accelerating
{
 if (accelerating) {
 if (self.engineEmitter.hidden) {
 self.engineEmitter.hidden = NO;
 }
 } else {
 self.engineEmitter.hidden = YES;
 }
 _accelerating = accelerating;
}

Here we hide or show jet flames based on our state. If you launch the game
now, you will see a nice effect that surely added some spice to our game. If Xcode
raises a warning, make sure that the accelerating property in ERGPlayer.h is of
non-atomic type.

Particle Effects

[72]

Advanced physics
Now that we have added the jetpack effect, we should add core gameplay elements.
We will add enemies and power-ups to our game. But we will need to handle
collisions somehow. That's where, once again, Sprite Kit and its sophisticated physics
engine will save us.

If you remember how we handled collisions before by setting collisionBitMasks,
the game checks if two things have the same collision bitmasks and handles their
collision. This was the way that worked for player-ground collision for us.

But we would like to handle the collisions ourselves. For example, we want the
player to lose if he touches enemy, or we want a shield to appear when he picks a
shield power-up. Thankfully, there is a working method for that.

The first thing that we need to do is add our scene as conforming to the
SKPhysicsContactDelegate protocol. To do that, open ERGMyScene.h
and change the line with @interface in it to this:

@interface ERGMyScene : SKScene <SKPhysicsContactDelegate>

This means that we implemented some of the methods needed to correctly
handle collisions.

Each time our physics bodies collide, our scene will call (void) didBeginContact:
(SKPhysicsContact *) the contact method. Here we handle collisions and do what
we need to do with our bodies and nodes.

To make this method work we need to update our knowledge on bitmasks.

The following are the three types of bitmasks used in Sprite Kit physics:

•	 categoryBitMask: This mask shows us what category this body belongs
to. It is used to see what type of collision body this is.

•	 collisionBitMask: This is used to handle collisions automatically.
Bodies with overlapping masks will collide and the physics engine
will handle everything for you.

•	 contactTestBitMask: This mask is needed for manual collision handling in
the didBeginContact method. Each time bodies with overlapping contact
masks collide, you will get this method invoked. When the collision ends,
didEndContact will get triggered.

Chapter 5

[73]

Bitmasks in Sprite Kit are 32 bit, the same as integers, and they work by setting
individual bits in an integer. Thus, there are only 32 possible masks, and you
should use them carefully, since mistakes here lead to a lot of confusion.

As bitmasks use each individual bit, you should use these numbers for masks: 1, 2,
4, 8, 16, 32, and so on.

We will need to create new masks in the Common.h file and add the following code
to it:

const static int playerBitmask = 1;
const static int enemyBitmask = 2;
const static int shieldPowerupBitmask = 4;
const static int groundBitmask = 8;

We will use these bitmasks to handle different objects on screen. After this, we need
to create actual classes to handle power-ups and enemies.

Create a new ERGEnemy class and make SKNode as its parent.

We will need only one property there, that is, emitter and add it to ERGEnemy.h
using @property (strong, nonatomic) SKEmitterNode *emitter.

Now in the .m file, we will need to set up the particle emitter for the job, as follows:

- (instancetype) init
{
 self = [super init];
 if (self) {
 [self setup];
 }
 return self;
}

- (void) setup
{
 self.emitter = [NSKeyedUnarchiver unarchiveObjectWithFile:
 [[NSBundle mainBundle] pathForResource:@"enemy"
ofType:@"sks"]];
 self.emitter.name = @"enemyEmitter";
 self.emitter.zPosition = 50;
 [self addChild:self.emitter];
 self.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:20];
 self.physicsBody.contactTestBitMask = playerBitmask;
 self.physicsBody.categoryBitMask = enemyBitmask;
 self.physicsBody.collisionBitMask = 0;
 self.physicsBody.affectedByGravity = NO;
}

Particle Effects

[74]

We override the init method to add the new setup method that creates a new emitter
and a new physics body. We set contactBitMask to playerBitmask, since we want to
be notified when a player sprite is colliding with the enemy sprite, and we don't want
enemies to collide with each other. We set categoryBitMask in order to identify the
object, collisionBitMask to zero since we don't want our engine to handle collision
for us, and we will do it manually. We also set affectedByGravity to NO as we don't
want our enemies to fall off the screen.

The next thing we need is power-ups. Create the ERGPowerup class (we will use this
class to represent objects that grant shields to the player character) and set ERGEnemy
as its superclass. We need to redefine the setup method in ERGPowerup.m as we
want them to do different things:

- (void) setup
{
 self.emitter = [NSKeyedUnarchiver unarchiveObjectWithFile:
 [[NSBundle mainBundle] pathForResource:@"powerup"
ofType:@"sks"]];
 self.emitter.name = @"shieldEmitter";
 self.emitter.zPosition = 50;
 [self addChild:self.emitter];
 self.physicsBody = [SKPhysicsBody bodyWithCircleOfRadius:20];
 self.physicsBody.contactTestBitMask = playerBitmask;
 self.physicsBody.categoryBitMask = shieldPowerupBitmask;
 self.physicsBody.collisionBitMask = 0;
 self.physicsBody.affectedByGravity = NO;
}

This is same as the previous thing, but we pick a different particle effect and another
categoryBitmask.

After this, we need to add enemies to our scene. First, import the ERGEnemy.h and
ERGPowerup.h files at the top of ERGMyScene.m. Second, we will need methods to
create enemies:

- (ERGEnemy *) spawnEnemy
{
 ERGEnemy *temp = [[ERGEnemy alloc] init];
 temp.name = @"enemy";
 temp.position = CGPointMake(self.size.width + arc4random() % 800,
arc4random() % 240 + 40);
 return temp;
}

Chapter 5

[75]

This method is straightforward, but for the arc4random() function that returns a
random number, and if we perform a modulo operation on it with certain numbers,
we will get a random number from 0 to the previous number of that number. This is
useful, since we want our enemies to spawn somewhat randomly. They spawn off
screen. We will need the same method to spawn power-ups:

- (ERGPowerup *) spawnPowerup
{
 ERGPowerup *temp = [[ERGPowerup alloc] init];
 temp.name = @"shieldPowerup";
 temp.position = CGPointMake(self.size.width + arc4random() % 100,
arc4random() % 240 + 40);
 return temp;
}

In order to move them, add the following code to the update method:

 [self enumerateChildNodesWithName:@"enemy" usingBlock:^(SKNode
*node, BOOL *stop) {
 ERGEnemy *enemy = (ERGEnemy *)node;
 enemy.position = CGPointMake(enemy.position.x -
backgroundMoveSpeed * timeSinceLast, enemy.position.y);

 if (enemy.position.x < -200) {
 enemy.position = CGPointMake(self.size.width +
arc4random() % 800, arc4random() % 240 + 40);
 enemy.hidden = NO;
 }
 }];

 [self enumerateChildNodesWithName:@"shieldPowerup"
usingBlock:^(SKNode *node, BOOL *stop) {
 ERGPowerup *shield = (ERGPowerup *)node;
 shield.position = CGPointMake(shield.position.x -
backgroundMoveSpeed * timeSinceLast, shield.position.y);

 if (shield.position.x < -200) {
 shield.position = CGPointMake(self.size.width +
arc4random() % 100, arc4random() % 240 + 40);
 shield.hidden = NO;
 }
 }];

Particle Effects

[76]

The preceding code will move enemies at the same speed as the background is moved,
and will move the enemy to a somewhat random position in front of the screen once
it goes off screen. This way we will always use only a certain amount of enemies and
won't create any new ones. Re-using things is a good practice, since it saves us memory
and processor time. Next, we need to add some constants that handle the number of
enemies that spawn and power-ups that can spawn.

We will add these to Common.h:

const static NSInteger maximumEnemies = 3;
const static NSInteger maximumPowerups = 1;

Now back in ERGMyScene.m, we will create new enemies and power-ups in the
initWithSize: method:

 for (int i = 0; i < maximumEnemies; i++) {
 [self addChild:[self spawnEnemy]];
 }
 for (int i = 0; i < maximumPowerups; i++) {
 [self addChild:[self spawnPowerup]];
 }

Now it's time to change the appearance of enemies. Create a new particle effects file
for them and name it as enemy.sks. You can configure them the way you like, but I
used the following properties for enemies:

•	 Particles: 500
•	 Lifetime: 0.05
•	 Position and range: zero
•	 Angle: 0 with 360 range
•	 Speed: 400
•	 Acceleration: Zero on both the axes
•	 Scale: 0.1 with 0.1 range and 1 speed
•	 Rotation: At zero and yellow color

And the following properties for power-ups:

•	 Particles: 400
•	 Lifetime: 1
•	 Position range: X at 20 and Y at 0
•	 Angle: 90 with 0 range

Chapter 5

[77]

•	 Speed: 100 with 100 range
•	 Acceleration: X at 0 and Y at -50
•	 Scale: 0.1 with 0.1 range and 1 speed
•	 Rotation: At zero and blue color

This makes a nice yellow ball that looks dangerous enough for enemies and the blue
flame for power-ups. In order to use collisions and collision handling, we need to
change the masks in ERGPlayer.m and the old values to the following ones:

 self.physicsBody.contactTestBitMask = shieldPowerupBitmask |
enemyBitmask;
 self.physicsBody.collisionBitMask = groundBitmask;
 self.physicsBody.categoryBitMask = playerBitmask;

Again, the preceding code should be straightforward. The first line sets masks that
we want to register contact events with. The second line sets automatic collisions
with the ground, we want these to work as they did before. And the final line is the
category to identify us.

Now we need to modify ERGMyScene.m and add methods to handle contacts:

- (void) didBeginContact:(SKPhysicsContact *)contact
{
 ERGPlayer *player = nil;

 if (contact.bodyA.categoryBitMask == playerBitmask) {
 player = (ERGPlayer *) contact.bodyA.node;
 if (contact.bodyB.categoryBitMask == shieldPowerupBitmask) {
 player.shielded = YES;
 contact.bodyB.node.hidden = YES;
 }
 if (contact.bodyB.categoryBitMask == enemyBitmask) {
 [player takeDamage];
 contact.bodyB.node.hidden = YES;
 }
 } else {
 player = (ERGPlayer *) contact.bodyB.node;
 if (contact.bodyA.categoryBitMask == shieldPowerupBitmask) {
 player.shielded = YES;
 contact.bodyA.node.hidden = YES;
 }
 if (contact.bodyA.categoryBitMask == enemyBitmask) {
 [player takeDamage];
 contact.bodyA.node.hidden = YES;
 }
 }
}

Particle Effects

[78]

The preceding method is provided with the contact that has two properties in it,
bodyA and bodyB. But these bodies are somewhat randomly selected and we need
 to check their type before we do anything. Here we check if we picked up the
power-up on which we set the shielded property on our player to YES, and if we
touch the enemy, we will call the takeDamage method on the player.

We will need to modify ERGPlayer.m by first removing self.shielded = YES and
self.shielded = NO from where we put them before. They will be handled by
collisions from now on. After this, add a new method to handle taking damages:

- (void) takeDamage
{
 if (self.shielded) {
 self.shielded = NO;
 } else {
 self.hidden = YES;
 [[NSNotificationCenter defaultCenter] postNotificationName:@"p
layerDied" object:nil];
 }
}

Since we want the player node to be as decoupled from our scene as possible, we won't
call some method on the scene directly, but we will broadcast notifications to everyone
who might be interested in it. In our game, we will handle it by presenting a new
Game Over scene to the player.

Scene transitions
Only one scene may be present on-screen at any time, and in order to handle
different scenes that may hold different content we may need smooth transitioning
between them. The following is a code sample that will clear things up for you,
add it to ERGMyScene.m:

- (void) gameOver
{
 ERGGameOverScene *newScene = [[ERGGameOverScene alloc]
initWithSize:self.size];
 SKTransition *transition = [SKTransition
flipHorizontalWithDuration:0.5];
 [self.view presentScene:newScene transition:transition];
}

Chapter 5

[79]

Our Game Over scene

First, we create a new scene as usual. Next, we create a transition object. There are
many kinds of transitions with many different effects. On the third line, we ask view
to present a new scene. This ends our scene lifecycle. Scenes do not get saved in
memory; on each transition the old scheme is destroyed, and if you want to use it
again, you have to make it all over, as shown in the preceding screenshot.

There are many different transition types that you can use, check the
SKTransition class reference for a list of possible transitions. It is
available at https://developer.apple.com/library/IOs/
documentation/SpriteKit/Reference/SKTransition_Ref/
Introduction/Introduction.html or in Xcode search.

In order to call this method, we need to subscribe to notifications and add the
following code to the initWithSize: method of ERGMyScene.m:

[[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(gameOver) name:@"playerDied" object:nil];

Now we need to make a new scene, a Game Over scene, to show to the player each
time he fails.

Create a new class, name it as ERGGameOverScene, and make it a subclass of
SKScene. Add the following code:

- (instancetype) initWithSize:(CGSize)size
{
 self = [super initWithSize:size];
 if (self) {

 SKLabelNode *node = [[SKLabelNode alloc] initWithFontNamed:@"
Chalkduster"];
 node.text = @"Game over";

Particle Effects

[80]

 node.position = CGPointMake(self.size.width / 2, self.size.
height / 2);
 node.fontSize = 35;
 node.color = [UIColor whiteColor];
 [self addChild:node];
 }
 return self;
}

- (void) didMoveToView:(SKView *)view
{
 [super didMoveToView:view];
 UITapGestureRecognizer *tapper = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector(newGame)];
 [view addGestureRecognizer:tapper];
}

- (void) newGame
{
 ERGMyScene *newScene = [[ERGMyScene alloc] initWithSize:self.
size];
 SKTransition *transition = [SKTransition
flipHorizontalWithDuration:0.5];
 [self.view presentScene:newScene transition:transition];
}

In the preceding code, we add a new text label to the new scene as usual and set its
properties. Next, we add a tap gesture recognizer so that the player can try again
by tapping the screen. Finally, in the newGame method, we create new MyScene and
Transition to it, effectively starting a new game.

Summary
In this chapter, we have learned about particle effects and their flexibility in use.
We have created enemies and power-ups only with particle effects. We have found out
how we can handle contact events and how to use complex physics and collisions in
our game. We handled scene transitions and found out how to decouple a node from
the scene if needed. Our game is almost fleshed out, we have enemies, power-ups,
and lost conditions.

In the next chapter, we will learn how to add game controllers support to our game.
We will learn how to discover and use various game controllers that are new in iOS 7.

Adding Game Controllers
In this chapter, we are going to discuss a new feature available in iOS 7—game
controllers. Apple allowed video streaming from iOS devices to TV a long time
ago, but the lack of hardware controller support left many players underwhelmed.
Game controllers allow you to focus on the gameplay rather than controls, and if
you are using your iPhone or iPad as a controller, you don't receive any physical
feedback. This is one of the major drawbacks of touchscreen gaming—you won't
be sure whether you tapped the right thing unless you are looking at the screen.

Some companies started to work on this problem, and different controllers such
as iCade appeared. But they had one fundamental flaw in them—they had to be
supported by the developers in order to work with the game. Another issue was
connectivity. Some of them wanted to work over Bluetooth while others were
connected directly, and each of these methods had their downsides.

There were very few games that supported hardware controllers. Developers didn't
feel like supporting these controllers as the install base was far too small, which would
affect the sales, thus increasing the time spent to support them.

Another problem with such a controller is the lack of uniformity. Everybody makes
their own interface, and developers need to learn many different frameworks and
APIs in order to make these things work.

Another issue is the availability and spread of such controllers—the company might
go out of business, it may decide to not make more controllers, or their supply might
run out.

That's why supporting third-party controllers didn't work too well.

Adding Game Controllers

[82]

Native game controllers
Support for native game controllers first appeared in iOS 7. What are the advantages
of native controllers? Here are some of them:

•	 A universal API for every controller out there: You will need to
write the code only once to support a myriad of different controllers
by different manufacturers.

•	 An easy-to-use API written and supported by Apple engineers: You know
that your code will work on the latest versions of iOS and will generally be
supported throughout your application's lifetime. Bugs will be removed and
everyone will be happy.

•	 A standard layout for buttons and joysticks: You know what buttons each
controller will have and where they are expected to be.

Now that we have found out why game controllers are useful, let's incorporate them
into our project.

Game controller basics
The Game Controller API is based on the Game Controller framework.
Everything related to controllers happens there.

There are three types of controllers that are supported by the framework:

•	 Standard form-fitting controller: This is a controller in which the iOS device
resides. This controller has a direction pad, a pause button, four buttons,
and two shoulder buttons.

•	 Extended form-fitting controller: This is the same as the previous one, but it
can also have up to two sticks and two more shoulder buttons.

•	 Extended wireless controller: This is the same as the previous one, but it
works wirelessly and is an external device without holding your iOS device
in it.

The following figure shows the various types of controllers:

Chapter 6

[83]

L2 shoulder button/trigger R2 shoulder button/trigger

LED array

Joysticks

L2

L1 R1

Y
X

A
B

R2

L1 shoulder button R1 shoulder button

Different controller types

Apple does not necessarily require a game controller to play
a game—there should always be a way to play your game via
touchscreen. Game controllers enhance your user's experience,
but do not force them to do so.

Wired controllers are automatically discovered, but their wireless counterparts
require a one-time setup and can be used freely after that. A controller and a device
will automatically connect to each other once they are powered on. There is no
difference from the code's perspective for wired or wireless controllers.

Each game controller is represented with the GCController object, which you can
use in your game. You receive notifications when a new one is being connected
or disconnected.

Each game controller has a profile that identifies it as a controller type. Currently,
there are two profiles—gamepad and extendedGamepad.

You can check GCController for the properties of gamepad and extendedGamepad.
If they exist, it means that the controller is one of those types. Otherwise, it will
return nil.

Adding Game Controllers

[84]

There are two ways to receive data from the controller, which are as follows:

•	 By reading the properties directly
•	 By assigning a handler (block) to each button to be executed on button press

The following is a sample method to read inputs if you want to read them at
arbitrary times:

- (void) readControlInputs
{
 GCGamepad *gamepad = self.myController.gamepad;
 if (gamepad.buttonA.isPressed)
 [self jumpCharacter];
 if (gamepad.buttonB.isPressed)
 [self shootApple];
 [self moveBy: profile.leftThumbstick.xAxis.value];
}

Here we are checking if the buttons are pressed, and if they are, we execute some
methods such as jumping or shooting. On the last line, we read the value of the
x axis on the left thumbstick to move our character left or right.

The second way to set handlers is as follows:

- (void) setupController
{
 GCExtendedGamepad *gamepad = self.myController.extendedGamepad;
 gamepad.buttonA.valueChangedHandler = ^(GCControllerButtonInput
*button, float value, BOOL pressed)
 {
 if (pressed)
 [self shoot];
 };
 gamepad.buttonX.valueChangedHandler = ^(GCControllerButtonInput
*button, float value, BOOL pressed)
 {
 if (pressed)
 [self openInventory];
 };
}

What we do here is set the block to each button (in this case, two buttons) to execute
a piece of code each time a button is pressed. One button shoots and the second
button opens the inventory. These handlers also get called when the player releases
the button, so you should check for the pressed variable.

Chapter 6

[85]

Picking the positions of the thumbstick or the directional pad is a little more
complex. Usually, you get x and y values and you can work from there:

 GCControllerDirectionPadValueChangedHandler dpadMoveHandler =
^(GCControllerDirectionPad *dpad, float xValue, float yValue) {
 if (yValue > 0)
 {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };

In this block, we check the y value, and if it is higher then 0 (neutral), we start jumping.

Each controller also has a pause button, and you should implement the functionality
of pausing your game when the user presses the pause button. The controller holds a
block for the pause button that gets triggered each time it is pressed.

Using a controller in our game
As our game is not too complicated, we use only one button. We will map the same
thing to a few buttons so that the players can use any one that they like.

The first thing that we need to do is import the GameController framework. In order
to do this, add the following line to ERGMyScene.h at the beginning of the file:

@import GameController;

The preceding line of code adds game controller headers and links our project with
the game controller library while it is compiling. After this, we will need two new
properties in the same file:

@property (strong, nonatomic) ERGPlayer *player;
@property (strong, nonatomic) SKLabelNode *pauseLabel;

We will need a way to access our player object from the code that sets up the game
controllers, so we add the first property in the preceding code to hold it.

The second one is the label for the paused state of our game. We will show or hide it
based on the current game state.

Right after the line where you add player as a child in the initWithSize: method
in ERGMyScene.m, add the following line of code:

self.player = player;

Adding Game Controllers

[86]

Here, we set our property to hold a pointer to the player object. At the end of
initWithSize:, we will add the code to handle controller discovery and setup,
and create a pauseLabel, as shown in the following code:

 [self configureGameControllers];

 self.pauseLabel = [[SKLabelNode alloc] initWithFontNamed:@"Ch
alkduster"];
 self.pauseLabel.fontSize = 55;
 self.pauseLabel.color = [UIColor whiteColor];
 self.pauseLabel.position = CGPointMake(self.size.width / 2,
self.size.height / 2);
 self.pauseLabel.zPosition = 110;
 [self addChild:self.pauseLabel];
 self.pauseLabel.text = @"Pause";
 self.pauseLabel.hidden = YES;

Currently, we have not yet written the configureGameControllers method, but we
will do this shortly. The code to create a label should be fairly familiar to you—we
create a label node, set its properties, and set its position to the center of the screen
and hide it, as we don't want it to be visible in the unpaused state of the game.

Each scene has a paused property. When it is set to YES, the scene
stops evaluating actions for all descendants. But the update method
is still getting called! So, you may experience a very strange behavior.
If we pause our game now, all animations will stop, but the
background will still scroll.

The next thing that we need to do is stop updates if the scene is paused. To do that,
change the update method in ERGMyScene.m—add a check for the paused property
at the start of the update method and add the following code:

 if (self.paused) {
 return;
 }

This way, the update method will do something only if the scene is not paused,
which is the intended behavior. If the scene is paused, it will skip all that code and
drop out.

After this, we need the code to find any controllers and use them in our game. To do
this, add the following code to ERGMyScene.m:

- (void)configureGameControllers {

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(gameControllerDidConnect:) name:GCControllerDidConnectNotific
ation object:nil];

Chapter 6

[87]

 [[NSNotificationCenter defaultCenter] addObserver:self selector:@
selector(gameControllerDidDisconnect:) name:GCControllerDidDisconnectN
otification object:nil];

 [self configureConnectedGameControllers];

 [GCController
startWirelessControllerDiscoveryWithCompletionHandler:^{

 // we don't use any code here since when new controllers are
found we will get notifications
 }];
}

The first thing that we do is subscribe for notifications related to the game controller.
They are sent when a new controller is connected or disconnected from the device.
Next, we call another method to configure the controller.

Also, notice that if you turn off Bluetooth on your device, the game will crash on the
configureGameControllers method. The same thing will happen if you test on a
simulator. Adding error-checking unnecessarily complicates the code in our example,
so comment out [self configureGameControllers]; in the initWithSize:
method if you don't intend to use it on a Bluetooth-enabled device.

We also start searching for wireless controllers. We don't need any code inside the
completion handler as we will be getting notifications when controllers connect or
disconnect from the device. Let's get to the next method:

- (void)configureConnectedGameControllers {

 for (GCController *controller in [GCController controllers]) {
 [self setupController:controller forPlayer:self.player];
 }
}

This is a simple for loop, where we will go through all the available controllers
and run a common setup code for each of them. If you are making a more complex
or multiplayer game, you might want to differentiate the controllers here. There is
a handy playerIndex property on the controller that may prove useful for you,
but we don't use it here.

Adding Game Controllers

[88]

Most of the logic happens in the following method, where we set up actual
button handlers:

- (void)setupController:(GCController *)controller
forPlayer:(ERGPlayer *)player
{
 GCControllerDirectionPadValueChangedHandler dpadMoveHandler =
^(GCControllerDirectionPad *dpad, float xValue, float yValue) {
 if (yValue > 0)
 {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };
 if (controller.extendedGamepad) {
 controller.extendedGamepad.leftThumbstick.valueChangedHandler
= dpadMoveHandler;
 }
 if (controller.gamepad.dpad) {
 controller.gamepad.dpad.valueChangedHandler = dpadMoveHandler;
 }

 GCControllerButtonValueChangedHandler jumpButtonHandler =
^(GCControllerButtonInput *button, float value, BOOL pressed) {
 if (pressed) {
 player.accelerating = YES;
 } else {
 player.accelerating = NO;
 }
 };

 if (controller.gamepad) {
 controller.gamepad.buttonA.valueChangedHandler =
jumpButtonHandler;
 controller.gamepad.buttonB.valueChangedHandler =
jumpButtonHandler;
 }
 if (controller.extendedGamepad) {
 controller.extendedGamepad.buttonA.valueChangedHandler =
jumpButtonHandler;

Chapter 6

[89]

 controller.extendedGamepad.buttonB.valueChangedHandler =
jumpButtonHandler;
 }

 controller.controllerPausedHandler = ^(GCController *controller) {
 [self togglePause];
 };

}

At the beginning of this method, we create a handler for the directional pad and
thumbsticks—if the player presses the up button on the pad or moves the thumbstick
up, we will have the Y value going up from zero. Thus, we start jumping by setting
the accelerating property to YES.

After that, we check if the controller has an extendedGamepad profile, and if it does,
we attach this handler to the thumbstick. If it is a regular gamepad, we attach the
handler to the directional pad.

The same procedure is repeated when we declare a handler for a button—it checks
if the button is pressed and our character jumps; if it is, we set the A and B button
handlers to this handler.

The last handler that can be found in this method is the pause handler. It will get called
when a player presses the pause button. The following is the code for this method:

- (void) togglePause
{
 if (self.paused) {
 self.pauseLabel.hidden = YES;
 self.paused = NO;
 } else {
 self.pauseLabel.hidden = NO;
 self.paused = YES;
 }
}

Here we check if the scene is paused, and if it wasn't paused, we pause it and show
the Pause label. If it was paused, we continue the scene and hide the label.

Adding Game Controllers

[90]

Handling controller notifications
Another thing that we would want to handle is new controllers. We need to do
something when a controller connects or disconnects.

We can create a complex interface for that, but for our project, simple alerts will do.

The easy part is that when the controller disconnects, we won't get any new input,
so we don't need to do anything; we just show an alert and are done with it:

- (void)gameControllerDidDisconnect:(NSNotification *)notification {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Warning"
 message:@"Game
controller has disconnected."
 delegate:nil
 cancelButtonTitle:@"Ok"
 otherButtonTitles:nil, nil];
 [alert show];
}

We create the alertView object and show it. The user cancels it and goes on with
their game with touch controls.

But if we connect the controller, we need to ask the user if they actually want to
use it in the game. In order to do that, we need to set our scene as a delegate to
UIAlertView and change the @interface line in ERGMyScene.h to the following:

@interface ERGMyScene : SKScene <SKPhysicsContactDelegate,
UIAlertViewDelegate>

This means that we conform to UIAlertViewDelegate and that we will implement
certain methods to be executed after the user taps a button in the alert view.

When a new controller connects, we will get a notification and the following method
will get called, which should be added to the ERGMyScene.m file:

- (void)gameControllerDidConnect:(NSNotification *)notification {

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@"Warning"
 message:@"Game
controller connected. Do you want to use it?"
 delegate:self
 cancelButtonTitle:@"No"
 otherButtonTitles:@"Yes",
nil];
 [alert show];
}

Chapter 6

[91]

We create the alert view as before, but here we set its delegate to our scene.
The following is the delegate method:

-(void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex
{
 if (buttonIndex == 1) {
 [self configureConnectedGameControllers];
 }
}

When you press a button in the alert view, and if it has the delegate set, it will call
this method on its delegate. The button's index starts at zero, and zero is the cancel
button that is always present. If there are any other buttons, they will have the
subsequent indexes.

Usually, if we have multiple alert views, we have to understand which alert view
called what, and what the button at said index should do.

But in our situation, we have only one alert view that has more than one button,
and we know what it is, so we don't actually need to check anything here. If the
user tapped the Yes button on the alert view, we will configure all the connected
controllers. If they click on No, which is at index 0, nothing will happen.

Adding sound and music
Our game feels a bit bland without sound effects, so we are going to add some.
We will add background music and sound effects.

Sprite Kit is mostly a graphics library, and sound support is limited, but there are
ways to add music to our game.

The first thing that we need to do is add music files to the project. To do this,
drag-and-drop Kick_Shock.mp3, shieldCharged.wav, and shieldSmashed.wav
to our project in Xcode. Select Copy items into destination group's folder and
make sure that Add to targets has your project selected.

In order to play background music, we will need to add the AVFoundation library
to our project.

The AVFoundation library is a collection of classes that allows for audio and video
playback on iOS devices. To add AVFoundation to our project, add the @import
AVFoundation; line to ERGMyScene.h. We will also need a new property to play
music. To do this, add the following property to ERGMyScene.h:

@property (strong, nonatomic) AVAudioPlayer* musicPlayer;

Adding Game Controllers

[92]

After this, we need to create a new method to set up the playback sound. Add this
new method to ERGMyScene.m:

- (void) setupMusic
{
 NSString *musicPath = [[NSBundle mainBundle]
pathForResource:@"Kick_Shock" ofType:@"mp3"];
 self.musicPlayer = [[AVAudioPlayer alloc]
initWithContentsOfURL:[NSURL fileURLWithPath:musicPath] error:NULL];
 self.musicPlayer.numberOfLoops = -1;
 self.musicPlayer.volume = 1.0;
 [self.musicPlayer play];
}

In the first line, we created a path to our background music file. Next,
we initialized AVAudioPlayer—a class that plays music from AVFoundation.
Then, we set numberOfLoops, the property that says how many times the
music should be repeated.

Next up is volume; it is set to 1.0 and sends play messages to the player.

After you have done this, call [self setupMusic] at the end of the initWithSize:
method of ERGMyScene.m but before the return statement.

In a few lines, we managed to add background music to our game. But we will
want to stop music playback if the Game Over screen is called. To do this, locate the
– (void) gameOver method in ERGMyScene.m, and add the [self.musicPlayer
stop]; line at the beginning of it. This will stop music playback.

We will also add short playback sounds to our game. We will have them for shield
charging and depleting. We won't use AVFoundation for this, as there is a simple
sound playback action in Sprite Kit. It is used in this way (don't add this code to
the project):

SKAction *soundAction = [SKAction playSoundFileNamed:@"name.mp3"
waitForCompletion:YES];
[self runAction:soundAction];

It works as any other action. You create an action and run it against the node.
Wait for completion means that the action is considered done as soon as it runs
if waitForCompletion is NO, and the action is considered running if you pass
YES to it.

Chapter 6

[93]

Why haven't we used this action to play background music? It is used for playing
short sounds, as somehow removing this action does nothing. It is unclear if it is a
bug or a feature, but it is present in the previous version of Sprite Kit. The music
just keeps on playing.

As we handle shield effects in Player.m, it is a good place to add playback
sound. We will change the setShielded: method by adding music actions
to it. Replace your method with the following:

- (void) setShielded:(BOOL)shielded
{
 if (shielded) {
 if (![self.shield actionForKey:@"shieldOn"]) {
 [self.shield runAction:[SKAction
repeatActionForever:[SKAction animateWithTextures:self.shieldOnFrames
timePerFrame:0.1 resize:YES restore:NO]] withKey:@"shieldOn"];
 SKAction *musicAction = [SKAction playSoundFileNamed:@"shi
eldCharged.wav" waitForCompletion:NO];
 [self runAction:musicAction];
 }
 } else if (_shielded) {
 [self blinkRed];
 [self.shield removeActionForKey:@"shieldOn"];
 [self.shield runAction:[SKAction animateWithTextures:self.
shieldOffFrames timePerFrame:0.15 resize:YES restore:NO]
withKey:@"shieldOff"];
 SKAction *musicAction = [SKAction playSoundFileNamed:@"shieldS
mashed.wav" waitForCompletion:NO];
 [self runAction:musicAction];
 }
 _shielded = shielded;
}

As before, it handled the shield logic, but there is a little bit of playback sound
added to it.

Build and run the project; it should run and you should have background music
and sound effects fully working.

There is one more issue with our code. If you receive a call or exit from the
application, it will crash. This happens due to the fact that we need to close
AVAudioSession before our application resigns active. This class is used
underneath SKAction to play sounds.

Adding Game Controllers

[94]

To fix this, add the @import AVFoundation; statement and add the following code
to your AppDelegate.m file:

- (void)applicationWillResignActive:(UIApplication *)application
{
 // prevent audio crash
 [[AVAudioSession sharedInstance] setActive:NO error:nil];
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 // resume audio
 [[AVAudioSession sharedInstance] setActive:YES error:nil];
}

This code handles AVAudioSession and prevents your application from terminating.

Summary
In this chapter, we have learned what advantages hardware game controllers have and
how to work with them. Adding game controller support to your game can certainly
provide a better user experience for your players. Some people prefer playing on
actual controllers than on touch-screen devices, since the screen is always flat and
doesn't provide feedback to touches. A player can use the controller without looking
at it, which completely changes the experience of playing if he/she is playing on a TV.
One might argue that with game controllers, Apple is making a move into the console
gaming territory, and a huge library of games on the iTunes App Store playable on
your TV or iPad with a separate hardware controller is opening another new way to
experience iOS games. Adding game controller support to your game is not difficult,
and if you are not already supporting them, you should really consider doing that.
We have also learned how to add background music and sound effects to your game.
In the next chapter, we will discuss how you can add your game to the App Store,
what provisioning profiles are, and how to prepare your application bundle.

In the next chapter, we will discuss how to prepare your application for the App
Store. We will also learn about provisioning profiles and procedures to have your
application approved by Apple.

Publishing to the
iTunes App Store

In this chapter, we will discuss how to prepare your application for the App Store,
what steps need to be taken, and the logistics of the process. You will learn how to
register yourself as an Apple developer and post your application on the App Store.

Registering as a developer
In order to be able to get your applications published on the App Store, you need
to be registered as a developer with Apple. There is another added benefit of being
a registered developer—you will be able to test your software on the device. This is
the only way to do this. And as the simulator's performance is unreliable, you will
eventually have to do that, and I suggest that you get it as soon as possible,
especially if you are working with games – rendering on iOS simulator is very
slow and laggy. You can get very severe frame rate drops in most trivial situations,
where even old devices will show a solid 60 frames per second.

In order to register as a developer, we need to perform the following steps:

1.	 Create an Apple ID or log in to the iOS developer portal available at
https://developer.apple.com/register/index.action.

2.	 As the next step, you will have to accept the legal agreement with
Apple about your rights and duties as a developer.

Publishing to the iTunes App Store

[96]

3.	 After accepting the agreement, Apple will enquire you about your role as a
developer or designer and what platforms you are planning to develop for.

4.	 You will gain access to a limited number of resources as a developer, such as
videos and documentation, different guides, and other things.

5.	 The next thing that you should do is join the iOS Developer program at
https://developer.apple.com/programs/ios/. There are huge benefits
to this. You will get access to various developer resources and WWDC videos
(materials from yearly conferences for Apple developers, which used to cost
few hundreds by itself). On the downside, you will have to pay 99 dollars
per year.

6.	 You will need to pick a program: an individual or company program.
The company program offers adding more developers to the same
account and enhanced distribution profiles (if you want to distribute your
applications in-house). Its license requires much more paperwork, and it
takes much longer to register as a company. If you are a sole developer,
there are no benefits in registering as a company, as you will get equal
possibilities for App Store distribution.

After performing all these steps, you will become a registered iOS developer.
If you have chosen to register as a company, it will take you a few weeks to
send the paperwork, but if you are a sole developer, the process will be instant.
Now you will need to set up your programming environment as follows:

1.	 The first thing that you need to do is add your developer account to
Xcode (remember that you will need Xcode 5 or a higher version for
this) by navigating to Xcode | Preferences.

2.	 Click on Accounts from the top menu.
3.	 Click on the + button in the bottom-left corner and add Apple ID,

as shown in the following screenshot:

Chapter 7

[97]

Adding your Apple ID to Xcode

After this, you will be able to use all the features available to
registered developers.

Bundle ID
Bundle ID is a unique identifier that allows Apple to uniquely identify your
application among all others. It is used for the following purposes:

•	 To enter in the Xcode project
•	 To enter in iTunes Connect (a platform to configure distribution of

your applications)
•	 App ID
•	 iCloud container ID
•	 Other services like Game Center or in-app purchases

Publishing to the iTunes App Store

[98]

In order to change a bundle ID of an already existing application, select it in
the project navigator, click on General present in the top menu, and if needed,
open the disclosure triangle near Identity. There you will have the bundle ID
as shown in the following screenshot. The usual format for the bundle ID is
com.<company>.<project>, and this helps to keep your ID unique.

Changing the bundle ID

Occasionally, you will need to change your bundle identifiers as they are used in
many places.

Provisioning profiles
The following are the two kinds of provisioning profiles that are used
in development:

•	 Developer provisioning profile: This is a collection of digital certificates
and other entities that uniquely identify you as a developer, devices that
you chose to use for testing, and enables devices to be used for testing.
Each provisioning profile will contain your developer certificates,
unique identifiers of devices that are used for testing, and your App ID.

•	 A store provisioning profile: This is a profile that ensures that the
application was made by you, and authorizes the use of certain features
and technologies. It contains your developer certificate that you need to
submit your application to the App Store.

In the past, you had to handle provisioning yourself, but starting with Xcode
5.0, most of this is handled for you. This is a great feature, as provisioning was
a huge pain for developers, and you could spend endless hours trying to fix
incomprehensible issues.

Chapter 7

[99]

Now, all you need to do is click on Use for development in Organizer when your
device is connected and build the application. Organizer is an instrument within
Xcode that helps you with various tasks such as adding more devices to your profile
and handling crash logs. To access it, navigate to Window | Organizer in the
top menu.

If there are some issues, Xcode will propose to fix them as displayed in the following
screenshot. Usually, clicking on the Fix Issue button will magically fix everything
without your intervention. In some cases, you will need to wait for a few minutes,
but mostly that's it.

The Fix Issue button will help you when something goes wrong

Preparing our application for the
App Store
In order to prepare our application for App Store, we need to perform the
following steps:

1.	 Set the deployment info by selecting a project in the project navigator and
opening Deployment info if needed. Here, we set different settings of our
application, such as supported versions (Sprite Kit only supports iOS 7 and
higher versions), devices (our application is iPhone only), orientations (make
sure only Landscape ones are selected), and others such as the status bar's
style and the first launching storyboard.

Publishing to the iTunes App Store

[100]

2.	 Add app icons by performing the following steps:

1.	 Open Images.xcassets in the project navigator.
2.	 Select AppIcon.
3.	 Add icons from resources of this chapter 58.png, 80.png, and 120.

png respectively and drop them to the icon places, as shown in the
following screenshot. Since our application is iPhone-only, we only
need three icons. If we made an iPad version, we would have to add
many more icons.

Adding icons to the project

Managing applications in iTunes Connect
iTunes Connect is an Apple and web-based tool that iOS developers use to set
up contracts, banking, and tax information, and submit new applications or
newer versions of old applications. We will use it to add a new record about our
application. This record contains the following:

•	 Basic application information
•	 Pricing and territories where the application is available
•	 Adding languages and keywords
•	 Uploading large icons and screenshots
•	 Additional questions about your application (does it use cryptography or

have other legally restricted uses)
•	 Preparing for a binary upload

Chapter 7

[101]

Before registering the application in the App Store, you might have
to fill some legal paperwork, such as accepting agreements with
Apple about various distribution issues and providing Apple with
information of your bank account and tax. This is available in iTunes
Connect in the Contracts, Tax and Banking tab. You won't be able to
distribute without accepting those agreements.

In order to register an application in iTunes Connect, perform the following steps:

1.	 Log in to iTunes Connect at http://itunesconnnect.apple.com.
2.	 On the iTunes Connect home page, click on Manage your apps.
3.	 On the Manage your apps screen, click on Add New App.
4.	 On the next screens, follow the directions and fill everything that is required,

as shown in the following screenshot:

Entering basic info about an application

5.	 You will need to create a new bundle ID for your application. Click on the
link to create it and pick it after you create it.

6.	 After this, you will need to set the version of the application (1.0 will do),
copyrights, the category of the application, and ratings.

7.	 You will need to upload large icons (1024 x 1024) and screenshots from both
3.5 and 4-inch retina devices.

Publishing to the iTunes App Store

[102]

When you are done registering your application in iTunes Connect, you will see the
Waiting for Upload status in your Application Details page. If it is of some other
state, fix the issues that prevent the ready state, such as missing screenshots or text.

Now you will need to build the application for distribution. In order to do that,
perform the following steps:

1.	 Make sure you have distribution certificates. To check this, navigate to
Xcode in the top menu and then to Preferences | Accounts in the top pane.
Select your account and click on View Detail. Under Signing Identities,
you should see iOS Development (2) and iOS Distribution, as shown in
the following screenshot. If something is missing, click on the + button on
the same screen and it will add a distribution certificate to your account.
Go to the iTunes developer center and click on Certificates and download
it. After it is downloaded, run it to add to Keychain. After that is done,
it should appear on the list.

Both iOS Development and Distribution profiles are installed

2.	 After your profiles are set up, you will need to make a build for distribution.
To do that, change the iOS device from the iOS simulator near the Build
button on the left-hand side of the Xcode window. After that, click on
Product in the top menu and archive the profiles there by clicking on the
Archive option as shown in the following screenshot:

Chapter 7

[103]

Archiving your application

3.	 The Organizer should open with details about your application, as shown
in the following screenshot. You can click on Validate… there to check if
everything is right, and on Distribute… as soon as you want to upload it
for review. Xcode will prompt you for your Apple ID and password, and if
you have your application set up in iTunes Connect, it will be uploaded
for review. You can also use the Distribute… button to create a .IPA file
of your game, and you may make it available for your testers as shown
in the following screenshot. For further details on this, read about ad hoc
distribution on the Apple Developer website.

Application archived for distribution

Publishing to the iTunes App Store

[104]

Life after uploading
Your application can have several states, which are as follows:

•	 Waiting for upload: This is the state after you have registered your
application in iTunes Connect but have not uploaded the binary yet.

•	 Waiting for review: This is the state in iTunes Connect after uploading
your application.

•	 In review: This is the state when your application is currently in review.
It takes any amount of time from minutes to days, depending on a few
factors such as the complexity of the application or the reviewers' workload,
but mostly they are random.

•	 Ready for sale: This means that if you have not changed the default date
of the availability of your application, it will be available for download
from the App Store on the day it gets approved.

Sales statistics and other useful data can be found in iTunes Connect. Please make
sure you check all the available tools that it offers such as sales and trends, iAd,
and catalog reports.

Summary
In this chapter, we have learned what steps need to be taken in order to post
your application to the App Store. You have learned about provisioning profiles,
code signing, development and distribution certificates, and a process that needs
to be undertaken each time you want to upload your application to the iTunes
App Store.

Index
A
accelerometer

about 38-42
advantages 38

actions, Sprite Kit project
about 18
types 18

affectedByGravity property 43
animation

about 49, 50
adding, to Sprite Kit project 51-55

API, iOS 7 7, 8
application

building, for distribution 102, 103
managing, in iTunes Connect 100, 101
preparing, for App Store 99, 100
registering, in iTunes Connect 101, 102
states, after uploading 104

App Store
application, preparing for 99, 100

B
background image

adding, to Sprite Kit project 22-26
background music

adding 91-93
bitmasks 73
BodyWithCircleOfRadius method 42
BodyWithEdgeFromPoint:toPoint

method 42
BodyWithPolygonFromPath method 42
BodyWithRectangleOfSize method 42
Bundle ID 97

C
categoryBitMask 43, 72
character

moving, with actions 28
character state

handling 56-58
in air state 56
jumping state 56
running state 56

Cocos2d 9
collisionBitMask 44, 72
contactBitMask property 44
contactTestBitMask 72

D
density property 43
developer provisioning profile 98
draw calls 50
dynamic property 43

E
Emitter Node properties

setting 70

F
FPS (frames per second) 15

G
game center

features 12
game controllers

about 81

[106]

basic concepts 82-85
extended form-fitting controller 82
extended wireless controller 82
native game controllers 82
notifications, handling 90, 91
standard form-fitting controller 82
using, in Sprite Kit project 85-89

game controller support 8, 11, 12
game development

Cocos2d 9
framework 8, 9
OpenGL 9
third-party libraries 9
UIKit 9

game loop 19-22
games

developing, for iOS 7 8
gesture recognizers

about 36, 37
using 36, 37

I
infinite scrolling

adding 29, 30
iOS 7

about 5
API 7, 8
features 5, 6
game controllers 81
games, developing for 8
Sprite Kit 10

iOS developer portal
URL 95

iOS Developer program
URL 96

iTunes Connect
about 100
application, managing 100, 101
application, registering 101, 102
URL 101

M
mass property 43
Multitasking 7

N
native game controllers

about 82
advantages 82

node
about 16
methods 17
properties 17
types 17

O
OpenGL 9

P
parallax 65
parallax background

adding 62-65
particle effects

about 67
creating 68-71

particle emitter 67, 68
physics body

properties 43, 44
physics engine

about 42
implementing 44-47
physics simulation 42-44

physics simulation 42-44
provisioning profiles

about 98
developer provisioning profile 98
store provisioning profile 98

R
register as a developer

with Apple 95-97
restitution property 43

S
scene 16
scene transitions

handling 78-80

[107]

score label
adding 30, 31

shield animations
adding 58-61

SKEffectNode 17
SKEmitterNode 17
SKLabelNode 17
SKNode 17
SKShapeNode 17
SKSpriteNode 17
sound effects

adding 91-93
Sprite Kit

about 8, 10
advantages 10, 11

Sprite Kit physics
about 72-78
bitmasks 72

Sprite Kit project
about 13-15
actions 18
anatomy 15
animation, adding 51-55
background image, adding 22-26
background music, adding 91-93
character, moving with actions 28
character state, handling 56-58
game controllers, using 85-89
game loop 19-22
infinite scrolling, adding 29, 30
node 16, 17
parallax background, adding 62-65
scene 16
scene transitions 78, 79
score label, adding 30, 31
shield animations, adding 58-61
sound effects, adding 91-93

store provisioning profile 98

T
Text Kit 7
texture atlas

about 50, 51
benefits 50

third-party libraries 9
touches

handling 33-36
touchesBegan method 34
touchesCancelled method 34
touchesEnded method 34
touchesMoved method 34

U
UIKit 9
usesPreciseCollisionDetection property 43

X
Xcode 50

Thank you for buying
iOS 7 Game Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unity iOS Game Development
Beginner's Guide
ISBN: 978-1-84969-040-9 Paperback: 314 pages

Develop iOS games from concept to cash flow
using Unity

1.	 Dive straight into game development with no
previous Unity or iOS experience

2.	 Work through the entire lifecycle of developing
games for iOS

3.	 Add multiplayer, input controls, debugging,
in app and micro payments to your game

4.	 Implement the different business models that
will enable you to make money on iOS games

Application Development with
Parse using iOS SDK
ISBN: 978-1-78355-033-3 Paperback: 112 pages

Develop the backend of your applications instantly
using Parse iOS SDK

1.	 Build your applications using Parse iOS
which serves as a complete cloud-based
backend service

2.	 Understand and write your code on cloud to
minimize the load on the client side

3.	 Learn how to create your own applications
using Parse SDK, with the help of the
step-by-step, practical tutorials

Please check www.PacktPub.com for information on our titles

Learning Windows 8
Game Development
ISBN: 978-1-84969-744-6 Paperback: 244 pages

Learn how to develop exciting tablet and PC games
for Windows 8 using practical, hands-on examples

1. Use cutting-edge technologies like DirectX to
make awesome games

2. Discover tools that will make game
development easier

3. Bring your game to the latest touch-enabled
PCs and tablets

Learning ShiVa3D
Game Development
ISBN: 978-1-84969-350-9 Paperback: 166 pages

Get a grip on ShiVa3D mobile game development
with this step-by-step, hands-on toutorial

1. Step-by-step hands-on introduction,
perfect for those just getting started in
mobile development

2. Use the StoneScript scripting language to
handle object interactions and game events

3. Use the ShiVa editor to create special effects,
realistic physics, and level design

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Updates on iOS7
	Redesigning the iOS
	New APIs
	Developing games for iOS7
	Framework for game development
	Knowing about Sprite Kit
	Benefits of Sprite Kit
	Game controller support
	Game center renovations
	Summary

	Chapter 2: Our First Sprite Kit Project
	Sprite Kit basics
	Anatomy of a Sprite Kit project
	Scenes
	Nodes
	Node types

	Actions
	Game loop
	Adding a background image to our game
	Moving the character with actions
	Adding infinite scrolling
	Adding a score label
	Summary

	Chapter 3: Interacting with our Game
	Handling touches
	Using gesture recognizers
	Accelerometer
	Physics engine
	Physics simulation basics
	Implementing the physics engine

	Summary

	Chapter 4: Animating Sprites
	What is animation?
	What is a texture atlas?
	Adding animations to our project
	Character states
	Adding shield animations
	Adding a parallax background
	Summary

	Chapter 5: Particle Effects
	Particle emitters
	First particle effect
	Advanced physics
	Scene transitions
	Summary

	Chapter 6: Adding Game Controllers
	Native game controllers
	Game controller basics
	Using a controller in our game
	Handling controller notifications
	Adding sound and music
	Summary

	Chapter 7: Publishing to the
iTunes App Store
	Registering as a developer
	Bundle ID
	Provisioning profiles
	Preparing our application for App Store
	Managing applications in iTunes Connect
	Life after uploading
	Summary

	Index

